UNCLASSIFIED

AD NUMBER

ADB058565

NEW LIMITATION CHANGE

TO

Approved for public release, distribution
unlimited

FROM
Distribution authorized to U.S. Gov't.
agencies only; Test and Evaluation; DEC
1979. Other requests shall be referred to
Air Force Wright Aeronautical Labs., Attn:
MLTC, Wright-Patterson AFB, OH 45433.

AUTHORITY

Air Force Wright Lab/DOOS 1ltr dtd 24 Apr
1992

THIS PAGE IS UNCLASSIFIED




IR —————— L

AFWAL-TR-80-4115

ey

O ICAM MANUFACTURING COST/DESIGN GUIDE
AOVOLUME I: DEMONSTRATION SECTIONS

&

B. R. NOTON

BATTELLE’'S COLUMBUS LABORATORIES
505 KING AVENUE

COLUMBUS, OHIO 43201

MRS

SEPTEMBER 1980

FINAL REPORT .
SEPTEMBER 1977 ‘2-— JULY 1979

Distribution Limited to U S Government Agencies Only,
Test and Evaluation, Statement Applied December,
1979 Other Requests for This Document Must be
Referred to AFWAL/MLTC, Wright-Patterson Air Force
Base, Ohio 45433

SUBJECT TO EXPORT CONTROL LAWS

This document contains information for manufacturing or using mumtions of war Export of the
information contained herein, or release to foreign nationals within the United States, without first
obtaining an export hcense, 1s a violation of the International Traffic in Arms Regulations Such

violation 15 subject to a penalty of up to 2 years imprisonment and a fine of $100,000 under 22 USC
2778.

Include this irotice with any reproduced portion of thhs document.

MATERIALS LABCRATORY

AIR FORCE WRIGHT AERCNAUTICAL LABOPRATORIES
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AFB, OH 45433

' 1

L FILE COPY




X
)

NOTICE

When Government drawings, specifications, or other data are used for any
purpose other than in connection with a definitely related Government procurement
operation, the United States Government thereby incurs no responsibility nor any
obligation whatsoever; and the fact that the Government may have formulated,
furnished, or in any way supplied the said drawings, specifications, or other data,
is not to be regarded by implication or otherwise as in any manner licensing the
holder or any other person or corporation, or conveying any rights or permission
to manufacture, use, or sell any patented invention that may in any way be rclated
thereto.

This technical report has been reviewed and is approved for publication.

fo. k1l

STEVEN R. LE CLAIR, CAPTAIN, USAF
Project Manager

FOR THE COMMANDER

V6 Toeppen

NATHAN G. TUPPER

Chief

Computer Integrated Manufacturing Branch
Manufacturing Technology Division

"If your address has changed, if you wish to be removed from our mailing
list, or if the addressee is no longer employed by your organization please
notify AFWAL/MLTC, W~PAFB, OH 45433 to help us maintain a current mailing list".

Copies of this report should not be returned unless return is required by security
considerations, contractual obligations, or notice on a specific document.

AIR FORCE/56780/12 February 1981 — 2000




[e—

'DQ

SECURITY ?LfA§§Y§|CAT|ON OF THIS PAGE (When Dats Entered)

VE { REPORT DOCUHENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

FAWALm ~4115- \/5{___} /Ajz Goﬁggsgﬁ 9N

3 RECIPIPNT' S‘C‘ATALOG NUMBER

7)

TITLE (md Submte)

VOLUME Ie DEMONSTRATLOV SECTIONS

TICAM MMANUFACTURING /gosr//m«:smw GUIDE'( (M(,/DG),§

’sﬂwe*or:«ﬁ ERY o’EovER=c
Flnal/ﬁépdﬁtc T ’9
Sep tembeeynd9 7 7-Jul yuwd 79 _

- '*ﬂﬂr‘ﬁf_FORWNGORGTREVORTWUMBE374

UTHOR(e) —— 7| pCONIRACT GR GRANT_NUMBER(e)
7 *
. j’;ryan R? Notong Principal Investigator i ,5:;§ F33615-77-C- SO?Z
{ - Lo~ g e T

9 PERFORMING ORGANIZATION NAME AND ADORESS
Battelle's Columbus Laboratories
505 King Avenue

Columbus, Chio 43201

10 PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS

Project No. 870-7

1t CONTROULLING OFFICE NAME AND ADDRESS

/" 1Z<]BEPORT DATE"

Materials Laboratory ) § Se p b0 8#
Air Force Wright Aeronautical Laboratories —
Air Force Systems Command 13 'NUMBER OF PAGES
Wright-Patterson Air Force Base, Ohio 45433 287
14 MONITORING AGENCY NAME & ADODRESS(if dl"erwm_gonlng Otlice) 1S SECURITY CLASS. (of this report)
¥ .
Unclassified

15a OECL ASSIFICATION/DOWNGRADING
SCHEDULE

4-;'_ 5
16 DISTRIBUTION STATEMENT (of this Report)

Distribution limited to U.S. Government
hardware). Other requests for this docu
Laboratory (AFWAL/MLTC), Wright-Patterso

Dec. 79
only (test ana evaluation of military
ment must be referred to Materials
n AFB, Ohio 45433.

17. DISTRIGUTION STATEMENT (of the abstract enterod in Block 20, I different {rom Report)

18 SUPPLEMENTARY NOTES

Computer Aided Manufacturing
Manufacturing Cost
Design-to-Cost

Airfirame Design

Fuselage Panels

Cost Drivers

19 KEY WOROS (Continue on revorse side it necessary and identify by block numbet)
Trade Studies

Sheet Metal Parts
Sheet Metal Forming
Aluminum Sheet
Titanium Sheet
Steel Sheet

Assemblies
Mechanical Fastening
Part Count

Advanced Composites
Graphite/Epoxy
Laminating

¥

quick, simple, cost-trade comparisens of

in metallic and composite materials.

ABSTRACT (Continue on reverse side If necessary and !dentlfy by
‘The purpose of the "Manufacturing Cost/Design Guide” (MC/DG) is to enable
airframe designers to achieve lowest cost by conducting trade-offs between
manufacturing cost and other design factors.
MC/DG will enable designers, at all levels of the design process, to perform

structural performance/cost trade-offs on airframe components and subassemblies
To accelerate technology transfer,
potential cost saving opportunities offered by emerging materials and

3 block number)

When fully developed, the

manufacturing processes and

"

1473

FORM
DD 1 JAN 73 EDITION OF 1 NOV 6515 OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGKL {han Deata Enteraz))

4@?@%@

S

e - : C TR RO




»

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entored)

4 manufacturing technologies will be indice¥ed in the MC/DG.
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The first program, reported in AFML-TR-76-227, developéd a model of the
MC/DG, the contents, cost drivers, data requirementS and designer-oriented
formats for conventional and some emerging manufacturing technologies,

and also an implementation plan.

The second program (Con:zract No. F33615-77-C-5027) consisted of four phases
in which manufacturing man-hour data and designer-oriented formats were developed
for "Sheet-Metal Aerospace Discrete Parts", "First-Level Mechanically Fastened
Assemblies", and "Advanced Composire Fabrication". Further, structural
performance/manufacturing cost trade studies were conducted by designers in
“industry utilizing the manufacturing man-hour data developed in this program.
Wolume I of this report reviews the data development for each of these manu-
facturing technologies. A family of sheet-metal parts was studied. These
represent typical stiffeners, stringers, doublers, frames, ribs, webs, skins,
fairings, and brackets each produced by a number of manufacturing processes,
such as brake forming, rubber press, Buffalo roll, etc., The materials

studied were aluminum alloy, titanium alloy, and st:::;/>

The data developed by the five participating aerosp companies were normalized
and the data plotted in designer-oriented formats. Data have been developed
for base parts and also discrete parts. The base part is an element in its
simplest form and with designer-influenced cost elements (DICE) such as, in

the case of sheet metal, joggles, cut-outs, and heat treatment, a discrete

part is defined. Typical DICE analyzed for mechanically fastened assemblies are
accessibility, material types joined, part and fastener counts, and sealing

requirements. For composites, typical DICE are orientation and number of plies,
overlaps, fiber mix, cut-outs, and quality requirements,

QThe data are presented in the series of formats showing cost-driver effects
(CPE) and cost-estimating data (CED) and have been tested and evaluated using
various fuselage designs in titanium, aluminum, and grapnite/epoxy.

g 8 , , grap POXY G

The demonstration sections for sheet-metal, mechanically fastened assemblies,
and advanced composite fabrication are available to designers both in hard copy
and also as a computerized data base. Interactive graphics systems will be
necessary for future application in the design process. Volume III of this

report discusses in detail the functional requirements of the computerized
MC/DG.
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In Critique Mode:

PREFACE

This technical report covers the work performed under Contract
No. F33615-77-C-5027, from September 19, 1977, through July 19, 1979, by
the Battelle's Columbus Laboratories (BCL)/Airframe Industry Team for
the Computer Integrated Manufacturing Branch, Materials Laboratory

(AFWAL/MLTC), Air Force Wright Aeronautical Laboratories, AFSC, Wright-

Patterson Air Force Base, Ohio 45433. The airframe companies and program

managers participating under a subcontract with BCL in this program are
listed below.

1. USAF TECHNICAL DIRECTION

This program was administered under the technical direction of
Capt. Dan L. Shunk, AFWAL/MLTC, and Mr. David Judson, AFWAL/MLTC, who was

responsible for the MC/DG Computerization discussed in Volume III.

2, MC/DG COALITION

BCL was the prime contractor on the MC/DG Data Development
Program. Mr. Bryan R. Noton, Manager, Design/Manufacturing Interaction

Project Office, BCL, was the Program Manager.

BCL was supported by the
follouing subcontractors:

I o

Airframe Company Subcontractors Program Managers

General Dynamics Corporation, Fort Worth Ben E. Kaminski, Phase I
Division

Phillip M. Bunting, Phases
IT and III
Grumman Aerospace Corporation Vincent T. Padden
Lockheed~California Company Anthony J. Pillera <
Northrop Corporation, Aircraft Group John R. Hendel

Rockwell Interaational Corporation, Los Ralph A. Anderson
Angeles Division

Boeing Commercial

David Weiss, Phases I and II
Airplane Company

Peter H. Bain, Phase III

P TR T
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3. THE 'TLAM APPROACH

The team organization chart, indicating staff at BCL and at
each team member company participating in this program, is shown on
page 1iii.

Inportant advantages ave evident in the development of manu~
facturing man-hour data by a team of major aerospace companies. The
principal advantages are as follows:

o TIrovides a cross-section of smail and large aircraft ror

the entire industry; both military and commercial.

e VPresent team members have large interface with all levels
of designers. The MC/DG will, therefore, be transitioned
more rapidly by industry to the design process.

e Team draws on each company's expertise making results
more viable ({expertise and installed manufzcturing
facilities vary across industry).

e Team has an e:tensive source of available datz and
provides a broad base from which to collect and develop
data.

e Team provides the required base for deriving average
industry data (which cannot be achieved without the team
approach).

o Team can verify and thus provide confidence to data and
formats for designer use. rather than a pavochial point
of view of a single company.

¢ Team has establiched ground ruvles and methodologies to
develop manufacturing man-hour dztz and designer-
oriented formats.

s Team provides a broad bace for smerging technologies and
utilization of Air Force manufacturing technology (MT}

program results.

iv
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SECTION I

INTRODUCTION

The challenge of designjug-to-lowest cost will become increas-
ingly difficult due to the growing problems of inflation, systems
seophistication, and increasing labor costs; the need for affordable
performance will continue to play a dominant role, as the problems
will influence the ability of DOD to acquire defense systems. The
implementation of the "Manufacturing Cost/Design Guide" (MC/DG) by the
Computer Integrated Manufacturing Branch, Materials Laboratory (AFWAL/MLTC),
Air Force Wright Aeronautical Laboratories, Air Force Systems Command (AFSC),
is, therefore, an important step in arresting any potential erosion of ou.
defense capabilities and can be expected to substantially alleviate the

severe problems of designing-to-lowest cost.

The design teams of both manned and unmanned aircraft, such
as cruise missiles, can be motivated into a design-to-lowest cost
attitude by utilizing the MC/DG in the design process. Design teams
must be pr~ovided with:

¢ Tools: Identification and documentation of cost drivetrs

and cost reduction methods

e Incentives: Cost targets against which performance of

design personnel can be measured.

The specific objectives of the MC/DG are as follows:

# To provide structural designers with simple, relative,

and quantitativg cost comparisons of manufacturing
processes that can be rapidly applied

e To emphasize design orientation of MC/DG formats and

manufactering man-hour data for use at all phases of
design process, e.g., preliminary and detail design,
therefore, increasing emphasis on cost; a vital design
parameter

e To enable more extensive structural performance/manu-
facturing cost trade-offs to be conducted by designers
on airframe components and subassemblies

¢ To emphasize potential cost advantages of emerging

materials and manufacturing methods accelerating the

transfer of these technologies to preduction haxrdware.
1
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In summary, the objective oy the MC/DG is to put designers
on the lowest cost track early in the design process.

Because of the complex nature of the objectives of designing
and manufacturing aircraft systems to the lowest possible cost, manu-
facturers are turning increasingly to the use of the digital computer
for both the design and manufacture of aircraft. The computer-aided
concept is the basis of the Air Force's Integrated Computer-Aided
Manufacturing program, known as ICAM. ICAM will help industry to
revolutionize its approach to improving overall productivity, at all
levels of the manufacturing hierarchy, from the shop floor operations
to executive decision making.

The MC/DG is one of the most critical parts of the ICAM program.
The MC/DG, at this time, covers design, fabrication, and assembly. Future
efforts will include test, inspection and evaluation (TI&E), as well as
the cost reduction potential of emerging techmologies. The thrusv areas
of these ICAM prcgrams are shown in Figure 1. It will be noted that the
following are the thrust areas and planning designations to which the
MC/DG is related:

e Fabrication (2000)

e Design (4000)

o Assembly (7000)

e Test, Inspection, and Quality Assurance (0000}.

The MC/DG enables the required interaction to be achieved and
trade studies to be conducted between aircraft system performance and
manufacturing cost, while meeting the developmental schedule require-
ments. The interactions between performance, manufacturing cost, schedule,
and operations and maintenance costs are shown in Figure 2.

The individual designer has seldom been trained or has exper-
ience to conduct structural performance/manufacturing cost trade studies
in his daily efforts. However, today the designer is rated not oaly on
his ingenuity to meet the weight and cost objectives but also to achieve
this within the design schedule limitations (Figure 3). Design-to-lowest
cost is now a design discipline.

In the past, the designer had only one resource in determining

cost and this was the cost estimator. The cost estimator is still an

2
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FUNCTION

4

PERFORMANCE SCHEDULE
® WEIGHT ® PRODUCTION

LIFE CYCLE COST

& DURABILITY
MANUFACTURI
L CTURING e et ® INSPECTION/REPAIR
COsT
® SPARES
® PERSONNEL

FIGURE 2. INTERACTIONS BETWEEN DESIGN AND OTHER DISCIPLINES
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important factor in the final iteration of the design prior to procuction
commitment. However, it is often difficuit to meet scheduling require-
ments, as well as tc consider an adequate number of design alternatives
while ascertaining, with confidence, that the selected design is actually
the lowest cost alternative.

While the MC/DG can be used at all levels of the design process,
the importance of the preliminary design phase, the "window of opportunity",
needs to be emphasized. Figure 4 illustrates how the cost savings
leverage decreases as the program progresses. The preliminary design phase
is where industry has the maximum opportunity to achieve a low cost design.
It is here where radically innovative approaches to structural design
concepts znd manufacturing technology choice can significantly impact cost.
Configuration selection frequently offers the major opportunity to reduce
costs. It is at this preliminary design phase, as Figure 4 indicates,
where only a few percent of the program costs have been expended, yet
decisions have been made which influence 90 to 95 percent of the total
cost incliding operations and maintenance costs. As the program progresses
through detail design and production, it is extremely difficuly to reduce
the cost by more than a few percent even with innovative approache; to
design and manufacturing. As soon as the detail design phase is approached,
the majority of components considered for redesign to utilize alternative
advanced manufacturing processes or materials must meet Form, Fit, and
Function requirements of the part being replaced. Figure 5 shows the
cost impact of decisions as a function of the number of decisions. The
major milestones are indicated throughout the development of an aircraft
system committed to production.

The benefits of an MC/DG developed meeting the objectives

specified earlier are summarized tzlow:

e More trade studies possible within available time span
resulting in a larger number of alternative designs con-
sidered to assure lowest cost

e Manufacturing ¢ st drivers alleviated and addressed at
earlier stage in design process than now possible

e MC/DG serves as communications link between design and
manufacturing

® MC/DG stimulates designer to develop innovative structural
configurations at the PD stage, utilizing the lowest cost

6
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manufacturing technologies for both conventional and emerging
technologies.

MC/DG circumvents problem of limited number of cost studies
being made on airframe concepts prior to production release
(problem due to time-consuming process of obtaining required
cost information estimates).

MC/DG will support detail design decisions in selecting a
design approach at the designer/group leader level permitting
faster decisions avoiding need of higher level direction.
Decisions supported by hard facts made at design layout
table.

Greater breadth provided to designer; problem minimized of
Ypoint" designer selecting tco narrow a scope, resulting

in penalties later in the program.

MC/DG educates designers with varying levels of experience

on less costly alternatives improving future design.

MC/DG serves as training tool for young or less experienced
designers, equiping them to actively participate in design-

to-lowest cost programs.,

The development of the MC/DG is shown in Figures 6 through 9.
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SECTION I1

OBRJECTIVES OF MC/DG PROGRAMS

Two coutracts have been awarded in the development of the MC/DG.
The first, a l-year program (Contract No. F33615-75-C-5194), was completed
ir July, 1976. The results of this first contract are reported in
AFML-TR-7€-227. The principal objectives were to:

e Identify the Data Requirements for the MC/DG for both

conventional and emerging manufacturing technologies.

¢ Icdentify the Basic Format Design Criteria and create

formats displaying cost-driver effects (CDE) and cost-
estimating data (CED) for each section or manufacturing
§ technology in the MC/DG.
: e Prepare a detailed Model of the MC/DG for industry exami-
nation, The model consisted of a section-by-section

layout of all sections, including sample data sheets and

b o s

[+4

(¥
formats for each conventional and emexrging manufacturing
technology.

e Prepare en Implementation Plan for the MC/DG, i.e., define

the mechanisms to develop and/or collect CDE and CED data
for insertion in the designer-oriented formats.
The objectives of the second contract, a 15-month program,

awarded in September, 1977 {(Contract No. F33615-77-C-5027), is discussed

in tnis report. The objectives were to implement certain Demonstration
Sections of the MC/DG. The sections selected by the Computer Integrated
Menufacturing Branch, AFWAL/MLTC, were:

e Sheet-Metal Aerospace Discrete Parts: Phase I

e First-Level Mechanically Fastened Assemblies: Phase 11(a)

e Advanced Composite Fabrication: Phase II(b).

An objective of this prugram was also to utilize the data
developed a: 1 the designer-oriented formats for actual trade studies

on fuselage shear panels—--Phase IIIL.
The contents of *he MC/DG volume are shown in Figure 10.

It will be noted in Figure 10 that Phases I and 1I(b) above are part of

the MC/DC section identified under the wanufacturing category, ''Detail

14
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Fabrication Costs'". Phase Ii(a) is identified in Figure 10 under the
manufacturing categories, '"Assembly Costs',

Phase III represents a typical example of the application of
the MC/DG volume, "Manufacturing Technologies', to an airframe point
design utilizing conventional structural analysis techniques. An
overview of the three phases of the program, described in this report,
is shown in Figure 11. This program also has seven subobjectives., These
are:

(1) Systematically organize cost data for sheet-metal

manufacturing methods

(2) TIdentify high cost processes involved in manufacturing

sheet-metal aerospace discrete parts

(3) Identify high cost materials involved in manufacturing

aerospace discrete parts

(4) Test and refine the formats developed in the first AFML

MC/DG program {Contract No. F33615-75-C-5194)
utilizing actual data from Subotjective (1) above

(5) Establish the MC/DG for advanced composites and first-

level mechanically-fastened assemblies

(6) Provide the basls of extension of the MC/DG to all

other manufacturing cost centers

(7) Conduct trade s.udies utilizing the MC/DG demonstration

section for sheet-metal, advanced composites, and first-
level mechanically fastened assembliies.

The development and implementation of a Demonstration Section
for the MC/DG requires the accomplishment of the following tasks:

Task 1

e TFormulate general and detailed ground rules

o Develop glossary

¢ Reassess data requirements and formats from Contract No.

F33615-75-C-5194

e Develop data collection procedures and forms

e Develop dimensioned sketches of discrete parts and/or

assemblies

Task 2

s Develop and assemble data

13




PHASE 1

SHEET METAL
AEROSPACE
DISCRETE PARTS

CURVED SHEETS,
STRINGERS,
CLIPS, ETC,, N
Al STEEL& TIi.

PHASE 1
(Option 1)

(a)

MECHANICALLY

FASTENED
ASSEMBLIES

/ UPSET AND
COLLARED

RIVETS

\

PHASE 111
{Option 2)

FIGYRE 11.

Y (b

FUSELAGE SHEAR

PANEL

ALUMINUM ALLOY,
TITANIUM ALLOY &
GRAPHITE/EPOX'/
STRUCTURAL
CONFIGURATIONS

\

ADVANCED
COMPOSITE
FABRICATION

GRAPHITE/EPOXY
CURVED SHEETS,
STRINGER, CLIPS
{(FASTENERS OR
COCURED)

INTERACTION OF MC/DG PROGRAM PHASES SHOWING
RELATIONSHIP BETWEEN MATERIALS, PART

CONFIGURATIONS, AND JOINING TECHNIQUES
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Task 3

o Normalize data developed by aerospace team members

Task 4

e Develop formats from those presented in MC/DG model
(AFML-TR-76-227)

Task 5

e Incorporate manufacturing man-hour data and relative
cost data into designer-oriented formats

Task 6

e Insert in MC/DG.

Utilizing the IDEF, rcpresentation, these principal tasks are shown

in Figure 12.

18
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SECTION III1

MC/DG AND COST ESTIMATING MANUALS

The MC/DG team analyzed and assessed Cost-Estimating Manuals
(CEM) and compared the objectives and organization of these with those
of the MC/DG. The following are the principal differences:
e A CEM is not designer oriented. It is an estimating
tool usced primarily by cost estimators.
e A CEM does not meet the MC/DG development criteria.
e A CEM format is, therefore, not simple for designers
to use. It is time-consuming and involves complex
calculations which will severely conflict with design
schedules.
e A CEM does not illustrate or emphasize cost drivers.
e A CEM dees not present relative cost trade-off data
(CDEs) in a form readily accessible by designers at
different levels of the design process.
e The number of cost~trades, which can be cénducted by
the airframe industry on different designs involving
different manufacturing methods, are limited because
of the features of CEMs and the limited number of

experienced cost estimators availehle.
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SECTION 1V

DESIGNER-ORIENTED FORMAT DESIGN CRITERIA

The designer-oriented formats presented in the mcdel of the
MC/DG (AFML-TR-76-227) were reviewed by interdisciplinary groups at
BCL and at each company during their development. Each program manager
was responsible for the following categories of persons to review the
data requirements and formats:
¢ Management (concurrence necessary to assure MC/DG
utilization)
e Engineering {design and support)
e Manufacturing (fabrication, tooling, and quality
contrcl)
; e Procurement (materials, parts, and equipment).
Yurthermore, designer survevs were conducted and the feedback
- received on the MC/DG was as follows:
3 e Must be simple whenev~r possible
3

e Must not be time consuming to use in the design

process

¢ Complicated calculations should be avoided

s Maunufacturing data are urgently needed but with
designer orientation

e No single airframe company can provide all manu-
facturing cost data required due to varying expertise

e Designers are more concerned that it is the lowest
cost rather than what it costs, i.e., qualitative
comparisons are important.

The MC/DG team agreed that the CDE and CED formats must

meet the following cyiteria: :
e Emphasize cost drivers =
e Be simple to use

o Use designer language

e Instill confidence
¢ Be cconomical
e Be accessible

® Be maintainable.

21




The following is a detailed explanation of these format develop~

ment criteria.

1. EMPHASIZE COST DRIVERS

Sensitive factors, which, by minor variation in selection, can
cause major increases or decreases in manufacturing cost, will be empha-
sized in the MC/DG. The degree of impact on manufacturing cost during
the design developed through the selection of materials, manufacturing,
and fabrication processes must be depicted in formats and data in such a
manner as to make the designer readily aware of those elements of design

(cost drivers) that pose manufacturing cost hazards.

2. BE SIMPLE TO USE

Guidance to designers will be presented in CDE and CED formats
such that there is a minimum or no arithmetical calculations required to
determine the cost comparisons of design/manufacturing alternatives.

The cost impact formats and graphics will provide more direct read-out

of man-hours through maximum use of simple curves and tables,

3. USE DESIGNER LANGUAGE

The primary purpose of the MC/DG is to display manufacturing
process capabilities and costs in such a manner that it will permit
designers to select the most economical manufacturing approach. The
formats must be developed through a close working relationship with
design personnel at all the team member companies and through con-
structive recommendations submitted during the development of the MC/DG.
The charts and terminology included with the formats must be common to
the engineering commanity and be of the types which are recognized and

employed by the designer in his daily engineering tasks.

4, INSTILL CONFIDENCE

The dezsigner must have a high degree of confidence in the CDE
and CED formats and manufacturing man-hour data if the MC/DG is to
serve as a useful working tool for design. The formats developed will

be related to practical and meaningful cost trades that are illustrative

22




of airframe design decisions made every day by designers. The formats must
clearly provide an MC/DG for making trade-off decisions between manu-
facturing technologies with both comparative and quantitative cost data

It is recognized that the degree of accuracy of manufacturing man-hour

data integrated into the formats will be a significant factor in deter-

mination of the confidence and degree of utilization of the MC/DG in
industry.

5. BE ECONOMICAL

A high priority item in the development of the MC/DG is to

reduce acquisition and maintenance costs of the data and formats to a
minimum.

6. BE ACCESSIBLE

The MC/DG must be physically and readily available at all

designer locations. This will be handled differently within each

company, but along similar lines.

Copies of the MC/DG can be issued

to individual designers or small engineering groups. The wider distri-

bution of the MC/DG to individual users, the more extensive use can be

expected, The breadth and distribution would be weighed between the

ease of access by individual designers and the cost of distribution.

Computerization will greatly enhance the accessibility.

7. BE MAINTAINARIE

The formats must be developed to facilitate the maintenance of

the MC/DG. 1In today's highly fluid technical and economic environment,

the useful 1ife of the MC/DG will be dependeunt upon the flexibility of

the formats to accept revised or new data. One approach is through

computer preparation of individual pages of loose-leaf-type volumes.
The data would be stored in the central data bank and, for user access-
ibility, transmitted via teiephone connecticns to remote terminals to

each company for printout and wultiple distribution. This is discussed

in Volume II of this report dealing with MC/DG computerization.

=
Ed
=
=
=
=
=
=
=
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The data requirements and MC/DG formats were reviewed at team

member companies by:
e Management
e Engineering (design and support)
e Manufacturing (fabrication, tooling, and quality control)

e Procurement (materials, parts, and equipment).
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SECTION V

METHODOLOGIES FOR PRESENTING MANUFACTURING
MAN -HOUR DATA

The manufacturing man-hour data for the various materials,
aerospace discrete parts and assemblies, and manufacturing technologies
are presented in two ways. Firstly, cost-driver effects (CDE) and,
secondly, cost-estimating data (CED) are shown. The objectives of the
CDE and CED methodologies are:

e To develop a simple approach for the use of formatted

data by designers to achieve lowest manufacturing costs
during all design phases (CDE and CED)

e To provide qualitative cost guidance to the designer
to assure lowest manufacturing cost (CDE)

e To provide the designer with the capability through
quantitative guidance to perform simple trade-offs on
manufacturing costs (CED).

The CDE cost relationships, providing qualitative information,

have the following objectives:

o Identify cost drivers that increase the manufacturing
cost of the design

e Show relative effects of cost elements over which
designers have control

e Motivate designers to reduce the impact of the cost
drivers by designing around them.

Using the CDE approach, the designer should realize the lowest
cost while satisfying the performance requirements, e.g., airframe weight
and durability.

The CED cost relationships, providing quantitative information,
have the following objectives:

e Provide designers with manufacturing man-hour data to

allow trade-offs to be quickly performed to achieve
comparative cost for candidate structural configurations

e Motivate designers to conduct trade-offs through the use
of designer-oriented formats and manufacturing man-hour
data in the MC/DG.

The presentaticn of CDE and CED formats is shown in Figure 13.
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SECTION VI

DATA GENERATICN

1. RECURRING COSTS

Throughout the MC/DG, team, average production man-hours are
given. Direct material costs are not included. The direct factory
labor costs for manufacturing base parts and designer-influenced cost
elements (DICE) were generated by the five participating aerospace
companies using their own time standards, excluding personal fatigue
and delay (PF&D) allowances. In developing data for recurring costs
for base parts and DICE, general and detailed ground rules were formu-
lated by the team to assure consistent results. Elements that affect
the costs, such as lot release, program quantity, and learning curves,
were included in the generation of data.

Direct factory labor recurring costs consist of set-up (SU)
time and run time. The SU time is that time required to prepare for
a production operation. The SU time is required once for each manu-
facturing lot of parts.

The production run time is that time required to produce a
single part from the raw stock to part completion ready for storage or
use in assembly. The direct factory labor time per part is obtained
ty dividing the SU time by the lot size, e.g., 25, as an industry
average, and then adding the run time per part.

To facilitate the use of the MU/DG, the direct factory labor
and man-hours per part have been adjusted to reflect the part cost in
man-hours at unit 200. To achieve this, each company has applied its
own proprietary learning curves. Unit 230 base paic¢, DICZ costs, and
non-recurring tcoling costs (NRTC) submitted by the team companies have

been normalized by BCL and plotted on the various CDE and CED formats.

2. NON-RECURRING TOOLING COSTS (NRTC)

Standard tools are used, when available, to fabricate *"e base
part and to incorporate the DICE. NRTC is documented in man-hours.
As used in the MC/DG, the NRTC includes costs of those contract

tools required to make the part. Examples are forming tools, trim tools,

27
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and templates (check, drill, or router templates, etc.). The tools
vequired to produce the tools were not included, e.y., tooling tewmplates,
tcoling masters, and mock-ups. Tool material costs are included only

when significant.

3. DaTA COLLECTTON FORMS

The manufzcturing cost data (man-hours) were collected and

assenbled in forms such as shown in Table 1.
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SECTION VII

SHEET~-METAL AEROSPACE DISCRETE PART
DFMONSTRATION SECTION

Large quantities of sheet-metal partc are used in the fabri-
cation of airframes for both primary and secondary structures. Examples
of primary structures are fuselages, bulkheads, wing boxes, ribs, and
spars. Secondary structures include fairings, doors, and control surfaces.
A study of sheet-metal fabrication soon reveals that new equipment approaches
are required because of:

e Lack of new equipment for sheet-metal manufacture

e Little accomplished since 1940-1950 except for the

bladder press and advanced stretch presses with
higher tonnage.

For this reason, the Air Force has selected sheet-metal parts
fabrication as the first manufacturing technology to be developed and
demonstrated as an integrated computer-aided manufacturing (ICAM) system.
This system will serve as a model for future integration of other manu-
facturing technologies for which man-hour data are also being developed
for the MC/DG.

Therefore, a '"Sheet-Metal Aerospace Discrete Part" MC/DG Demon-
stration Section was selected by the Materials Labcratory (AFWAL/MLTC).
First, this will identify and quantify cost drivers in sheet-metal fabri-
cation to indicate which operational sequcaces would provide high payoff
opportunities for ICAM. Second, this will present cost-driver effects (CDE)
and cost-estimating data (CED) using designer-oriented formats for sheet
metal. These formats euable the designer to select the lowest cost manu-
facturing processes, develop designs avoiding or minimizing sheet-metal
cost drivers. conduct structural performance/manufacturing cost trade
studies, and, hence, put the designer on the lowest cost track early in
the design process.

Examples of sheet-metal cost drivers follow:

o Excessive profiling for weight reduction

e Hand working due to heat treatment distortion

o Hot forming requirements (titanium)

e Lack of high-pressure forming equipment (for iaminated

structure, sinewave formed webs, etc.)
30
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o Lack of standardization of clips, etc.

o Designs requiring "close fit-up" or resting or parts.

In sheet-metal manufacture, there are two distinct types of
cost drivers-—those requiring added standard manufacturing operations
and those introducing manufacturing complexities. This is shown below:

o Added standard manufacturing operations

-

- Joggles

- Flanged holes

- Special lineal trim Normal

; . > Shop

- Special end trim Operations

- Bend radii

- Beads J

e Manufacturing complexities

- Heat treatment -
Special

- Special tolerances Shop
Operations

- Special finish
While the MC/DG serves as a cost-cutting tool for designers,
examples of cost cutters in the actual manufacturing processes are as
follows:
e Multi-spindle routers
- N/C
- Tracer
¢ High pressure forming equipment
- Over 30,000 psi
~ Large bed
e Heat treatment
- Cryogenic
- Spray quenching
- Glycol! quenching
o Titapnium routing equipment
- Laser
o Improved hot forming technology
o Automated heat treatment/processing.
The Materials Laboratories' Computer-Aided Manufacturing
(CAM) Architecture--Task 3, "Sheet-Metal Fabrication Technology Program",
conducted by Boeing Military Airplane Development Company, Report No.

IR-765-6(1), revealed that of the material distribution in a typical
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transport aircraft, about 88 percent of the parts were in aluminum with
stainless steel representing approximately Y percent, and titanium approx-
imately 3 percent. It was further found that the part configurations

displayed the following distribution:

Material Flat Formed
Aluminum 43.27% 56.8%
Titanium 46.3% 53.7%
Stainless Steel 47.2% 52.8%
Nickel Alloys 28.1% 71.9%

Further important distributions in the Boeing report are.

Distribution by Forming Method for
Aluminum Parts

Method Percentage
Brake Form 71.4
Hydro Form 17.1
Die Form 6.0
Stretch Form 1.7
Roll Form 1.3
Hammer Form 1.1
Joggle Form 1.¢
Other Methods 0.4

Distribution by Fcrming Method for
Titanium Parts

Methed Percentage
Brake Form 46.6
Hydro Form 29.7
Die Form 17.0
Roll Form 2.7
Hot Form 2.6
Joggle Form 1.4

4
%]




Distribution by Forming Method for
Scainless Steel Parts

Method Percentage
Brake Form 59.4
Die Form 35.5
Roll Rom 3.6
Other 1.5

Distribution of Part Quantities and Direct Labor
Hours for Major Forming Processes

{ Part Quantity, Labor Hour,
Process Percentage Percentage
Brake Form 71.1 7.0
i Hydro Form 15.8 23.6
E Die Form 7.6 4.6
! Stretch Form 1.6 10.0
Roll Form 1.4 6.0
Hammer Form 1.1 5.5
Joggle Form 1.0 2.6
Impact Form 0.2 0.4
Spin Form 0.2 0.4

Distribution by Shape

Shape Percentage
One Bend 365
Two or More Parallel Bends, One 15.5
Direction
Two or More Non-Parallel Bends, 14.5 :
One Direction é
Two or More Parallel Bends, Two 12.9 'é
Directions E
Two cr More Non-Parallel Bends, 9.5 E
Two Directions
Curved Bend Line 7.1
Miscellaneous 1.0
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The above information served to support and confirm the MC/DG
coalition-derived ground rules, part sketches, and manufacturing methods
in the develcpment of the MC/DG "Sheet-Metal Aerospace Discrete Part"
Demonstration Section.

The ground rules for sheet-metal discrete parts are included
in Appendices A and B. It will be noted that man-hours on the formats
relate to lot size 25. Examples of the impact of lot size for three
different sheet-metal discrete parts and in three materials are shecwn
in Figures 14 to 17. The lct size of 25 was selected as it:

® Represents an optimum production release size; hence,

reduces manufacturing cost

® Represents aerospace industry conseusus of most common

release size

e Is frequently usad in aerospace cost estimating

e Keeps the effect of set~up on discrete part cost in

the prcper verspective

e Maximizes operator efficiency

e Provides improved opportunity for learning curve

improvements.

-

1. SHEET-METAL DISCRETE PART SELECTION

The discrete parts for which manufacturing man-hours were
developed for the candidate manufacturing technologies were celected
as being representative of typical airframe components in production.
The manufacturing man-hcurs were determined for all ..perational
sequences necessary to the identification and protection (packaging)
sequences of the parts prior t> assembly. Dimensioned sketches of each
component were prepared by the team. The part sketches were produced
at the team meetings and exampl.es of the sketches are included in
Appendix B,

It was essential to establish certain definitions prior to
development of the manufacturing man-hour data. Important definiticns
are as follows:

(1) Base Part: A detailed part in its simplest form, i.e.,
without complexities such as heat treatment, cut-outs,
and joggles.
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(2) Designer—Influenced Cost Elements (DICE): Includes

joggles, cut-outs, lightening holes, and special

tolerances that add cost to the base part configur-
ation. These additional costs are due to the
increased fabrication cperations and tooling
required over the standard manufacturing method
(SMM) for the base part.

(3) Detailed or Discrete Parts: A distinct airframe

structural part which may incorporate complexities,
e.g., a base part plus DICE, ready for assembly to
perform its required function in the airframe.
There are basically two distinct types of DICE--those that
require added standard manufacturing operations and those which intro-

duce manufacturing complexities requiring special shop operations.

The utilization of the base part, DICE, and discrete part
approach in making comparisons between manufacturing methods and also

conducting cost comparisons between equivalent structural sections is

illustrated in Figures 18, 19, and 20. It will be noted in Figure 18 that

the comparison is first made between various panels reinforced by

different lineal shapes such as stiffeners or stringers. In the case

of panels, flat, flanged, single contour, and compound contour base
parts are shown with the DICE consistirg of beads, lightening holes,

cut-outs, special trim, and heat trea.ment. The base part lineal

shapes consist of straight and single contour configurations. Examples

of the DICE for these lineal shapes are joggles, lightening holes,

special trim, and heat treatment. The objective is to determine the

cost (man-hours) of the sheet-metal forming methods, the additional
processes that may be required for the DICE, the tooling, and eventually
the cost of utilizing any emerging manufacturing technologies.

The integration of the panels and lineal shapes into structural
assemblies, such as lifting surfaces, fuselages, and internal webs,
is shown in Figure 19.

Utilizing, firstly, the '"Sheet-Metal Aerospace Discrete Part
Demonstration Section" and the "Mechanically Fastened Assembly
Demonstration Section'", a comparison between the manufacturing cost
for different structural assembly configurations can be determined
for the candidate forming methods, additional processes required for
DICE, and tooling. The next step .s to conduct structural performance/
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PANELS

o0&
)

MATERIAL TYPE

PART CONFIGURATION

BASE PART
FLAT
FLAT, FLANGED
SINGLE CONTOUR
COMPOUND CONTOUR

DICE.
BEADS
LIGHTENING HOLES
CUTOUTS
SPECIAL TRIM
HEAT TREAT
OTHER

SELECTED
REPRESENTATIVE

LLnfLdi
LINEAL SHAPES '

MATERIAL TYPE

FORMED
METAL
PARTS

FORMING METHODS

ADDITIONAL PROCESSES

TOOLING

*EMERGING
TECHNOLOGIES

+*Recom.nended to be deveioped

FIGURE 18.

EXAMPLE

N

TRADE OFF
COMPARATIVE COST
FOR
SHEET-METAL DISCRETE
PARTS

D g

—L vs. dﬂ_

UTILIZATION OF SHEET-METAL AEROSPACE
DISCRETE PART DEMONSTRATION SECTION
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PART CONFIGURATION“

BASE PART

STRAIGHT

SINGLE CONTOUR
+*COMPOUND CONTOUR
*TWIST

DICE.
JOGGLES
LIGHTENING HOLES
SPECIAL TRIM
HEAT TREAT
OTHER

FORMING METHODS

ADDITIONAL PROCESSES

TOOLING

*EMERGING
TECHNOLOGIES




STRUCTURAL ASSEMBLY UTILIZE DATA AND

WITH SHEET-METAL . FORMATS DEVELOPED

PARTS JOINED BY FOR DEMONSTRATION
MECHANICAL FASTENING SECTION

VARIOUS SHEET-METAL

TRADE-CFF BETWEEN
' CONFIGURATIONS

00 LN
.' PANELS LINEAR SHAPES’

MATERIAL TYPE SELECTED MATERIAL TYPE
REPRESENTATIVE
FORMED METAL
PARTS — ASSEMBLED
T CONFIGURATION PART CONFIGURATION
PART CON TI0 AND JOINED A G
1ST ORDER OF ASSY
FASTENERS
BASE PART BASE PART
FLAT STRAIGHT
FLAT, FLANGED TRADE OFF SINGLE CONTOUR
SINGLE CONTOUR COMPARATIVE COSTS *COMPOUND CONTOUR
COMPOUND CONTOUR FOR *TWIST
STRUCTURAL
DICE ASSEMBLIES DICE
BEADS JOGGLES
LIGHTENING HOLES ’ LIGHTENING HOLES
CUTOUTS SPECIAL TRIM
SPECIAL TRIM HEAT TREAT
HEAT TREAT OTHER
OTHER
FORMING METHODS (" ASSEMBLY W \ FORMING METHODS
JOINING
ADDITIONAL PROCESSES FASTENERS ADDITIONAL PROCESSES
“ SPECIAL J \
TOOLING TOOLING TOOLING
ADDITIONAL z
*EMERGING PROCESSES *EMERGING 3
TECHNOLOGIES L as REQUIRED TECHNOLOGIES
W,

*Recommended to be developed

FIGURE 19. UTILIZATION OF SHEET-METAL AEROSPACE DISCRETE PART AND
MECHANICALLY FASTENED ASSEMBLIES DEMONSTRATION SECTIONS
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COMPRESSION PANFLS —
STRUCTURALLY
EQUIVALENT SECTICH'S
FOR FORMED METAL
ASSEMBLIES

OF DIFERENT
CONFIGURATIONS

PANELS

LINEAL SHAPES

{ MATERIAL TYPE

l PART CONFIGURATION

BASE PART
FLAT
FLAT FLANGED
SINGLE CONTOUR
COMPOUND CONTCUR

COE CED

RELATIVE QUANTITATIVE
COSTS FOR COSTS FOR
STRUCTURALLY STRUCTURALLY
EQUIVALENT FQUIVALENT

COMPRESSION
PANELS USING
VARIOUS FORMED
SHEET METAL
CONFIGURATIONS

COMPRLSSION
PANELS USING
VARIOUS FORMED
SHEET METAL
CONFIGURATIONS

oIcE
BEADS
LIGHTENING HOLES
CUTOUTS
SPECIAL'TRIM
HEAT TREAT
OTHER

I FORMING METHODS J

I

EXAMPLE

e,

TRADE OFF
FOR
STRUCTURALLY EQUIVALENT SECTIONS

FIGURE 20.
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|
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TECHNOLOGIES
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RESULTYS

SELECTED MATERIAL TYPE ]
REPRESENTATIVE

FORMEOD METAL PART CONFIGURATION ]

PARTS

15T QROE R OF ASSY

BASE PART
STRAIGHT
SINGLE CONTOUR
COMPOUND CONTOUR
TWIST

DIcE
JOGGLES
LIGHTENING HOLES
SPECIAL TRIM
HEAT TREAT
OTHER

‘ FORMING METHODS ]

faboiTionat Pnocessesl

T TOOLING l

EMERGING
TECHNOLOGIES

(=)

JOINING
FASTENERS

SPECIAL
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I AS REQUIRED
- J

UTILIZATION OF SHEET-METAL AEROSPACE DISCRETE PART
DEMONSTRATION SECTION IN STRUCTURAL PERFROMANCE/
MANUFACTURING COST TRADE-STUDY
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manufascturing cost comparisons between the candidate structural con-

figurations consisting of panels of various configurations with the

stiffening Jineal shapes. The approach for a typical trade study,

in which cost effectiveness criteria (dollars/lb) and manufacturing

costs are compared, is shown in Figure 20. This approach has been

utilized in the trade studies on fiselage panels discussed later.

The results of a typical s:ructural weight/manufacturing cost

trade study is shown in Figure 21. This is for a titanium fuselage

panel and seven structural concepts were evaluated. It will be noted

that the cost of Concept VII is $1992, but that the weight of this

panel is 87.7) lbs. However, the recommended concept costs $2680 and

that the weight of this panel is 58.46 1bs. The cost per pound weight

saved is $23, which is the lowest cost c¢f the seven concepts evaluated.

2. MANUFACTURING TECHNOLOGIES ANALYZED FOR
SHEET METAL PARTS

The following manufacturing technologies were analyzed for
aluminum, titanium, and steel, respectively:

Aluminum
Brake/Buffalo Roll
Brake Form
Brake/Stretch
Die Form
Drop Hammer
Farnham Roll
Rout (Flat Sheet)
Rubber (Hydro) Press
Stretch Form

Titanium
Brake Form (Room Temperature)

Brake (Room Temperature)/Hot Stretch

Creep Form
Farnham Roll
Hot Press

Preform/Hot Size
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W

W,

Steel
Brake/Buffalo Roll

Brake Form (Room Temperature)
Brake/Stretch

Farnhem Roll

Ruhber Press

Stretch Form

The MC/DG team has specified operational sequences on infor-
mational sheets for each of the manufacturing technologies studied for
the gerospace discrete parts manufactured in both metallic and non-

metallic materials including mechanically fastened assemblies. This

is an essential step in the man-hour development tasks in order to

minimize possible variations between team members so that a reallstic

industry average is achieved for subsequent insertion on the MC/DG

formats. Examples of the operational sequences are shown below. These

are for an 2luminum beaded panel, titanium straight, and steel curved
stringers.

Ajuminum Beaded Panel

Initial Material Condition: 2024-0 (annealed)
Final Condition: 2024-T62

Manufacturing Method: Rubber (Hydro) Press Forming
1. Shear (length to width)

Stack drill (tooling holes)

Deburr

Polish radii aveas

Degrease

-

Rubber (Hydro) press form

Hand finish form

.

Identify (metal tabs)

Degrease

¥

O 0 O~ N LS W N
. ) < 1 ¢ ’
IR FE RN T A

st

i
[ws)
-

Solution heat-treat to T-42
11. Ice box

)

12. Check and straighten

13. Rout periphery
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14,
15.

l6.

17.
18.
19.
26,

Deburx

Degrease

Age to T-62

Alodine

Prime

Identify (rubber stamp)
Protect (package).

Titanium Straight Lineal Angle

Material type: 6A1-4V

Manufacturing Method: Brake Form/Hot Joggle

1.

O 0 NN B W

19,
11.
12.

Shear (length and width)
Machine lineal and end trim
Brake form (one bend)

Hot joggle (two joggles)
Identify (metal tag)
Alkaline clean

Descale

Alkaline clean

Surface preparation (dry hone)
Prime

Identify (rubber stamp)
Protect (package).

Steel Curved Lineal Angle

Material type: Phl5-7Mo Cres.

Manufacturing Method:
1.

N
.

W 0 N & v &~ W

Shear (length and width) 10.
Deburr 11.
Degrease 12,
Brake (one bend) 13.
Stretch Form 14,
Joggle 15.
Identify (metal tag 16,

Transform at 1400°F 17.

Check and straighten 18.
46

Brake and Stretch Form

Age to TH1050

Descale

Debur~

Trim length

Trim edges

Deburr

Clean and passivate
Identify (rubber stamp)

Protect (package).




SHEET-METAL AEROSPACE DISCRETE PART

DEMONSTRATION SECTION
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SHEET-METAL AEROSPACE DISCRETE PART DEMONSTRATION SECTION

OVERVIEW SELECTION AID . . ¢ v v & v s o o o o o s s o o o
FORMAT SELECTION AIDS. &+ ¢ 4 ¢ ¢ & o & « « o « o o o o« o « «
BASE PARTS ANALYZED. . « + v & ¢ ¢ v ¢ 4o ¢ « o o o « o o s
Aluminum . & & v v v b 4 e e e e e e e e e e e e s e e
Titanium . ¢ . v ¢ ¢ 6 ¢ 4 ¢ o o o o 4 2 s e e e e e e s
Steel. & v o v i i e e e e et e e e e e e e e e e
EXAMPLES OF UTILIZATION. « o« & ¢ v o v ¢ v v o v o o o o o o
Aluminum Fairing « . . & ¢ o ¢ 4o o 4 4 4 4 4 v e e e e
Steel SKin . o ¢ o« v v 4 i 4t h e e e e e e e e e e e
Titanium Stringer. . .« + &« ¢ v ¢ ¢ o ¢ o 4t 4 v e 4 o e e
FORMATS. & ¢ v ¢ v v 6 & o o o+ s s s o 4 o o « o o o s o o
Aluminum: Lowest Cost Processes . . « « v o &« + o &
Titanium: Lowest COSt Processes . o« « + « o &+ « « o &
Steel: Lowest Cost Processes. « « ¢« « + o o « o o & o+
Designer-Influenced Cost Elements (DICE) . . . . . . . .
Comparison of Manufacturing Technologies . . . . . .

Comparison of Structural Sections. . « . . o ¢« o o « .
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STRAIGHT

LR = SR N o

“MANUFACTURING COST/DE¥IGN GUIDE {(MC/D(

FORMAT SELECTION AID

SHEET-METAL AEROSPACEF DSCPFTE PA

LOWESY COST PROCESSES

7OST-ESTIMATING DATA (CED)

ALUMINUM

LINEAL OR

CONTOURED

|

PANEL

MATERIAL

STEEL

|

LINEALOR

LINEAL PART PANE

1

STRAIGHT OR
CONTOURED,

STRAIGHY

CONTQURED

»

‘ CED-A1 l P Q CED-A-19 ‘ CED-S-1 ' CED-S-2 0
CED-A-S K) )
‘ CED-A-4 ! ) gen-as CED-A-20 | CED-S-3 [ CED-S 4 A
nl CED-A-8 A . ’ CED-S 6 ~
L CED-A-7 i Ceoas CED-A-21 l/ CED-S5 » CEns //
A CED-A-11 N
—.L/ CED-A-10 '-L/ CED-A12 y CED-A-22
T ' CED-A-14
1_‘/ CED-A-13 14/ CED-ais CED.A-23
' A CED-A-17 =P
m CED-A- "8 . CED-AE = CED.A-24
l | [ ] i
{ |
DICE® DICE* DICE* DICI
_ 1
STANDARD STANDARD STANDARD STANDARD
JOGGLE DICE-3 cuToUT DICE-1 JOGGLE DICE-3 cuTouT
FLANGED FLANGED FLANGED FLANGED
HOLE DICE-4 HOLE DICE-4 HOLE DICE-4 HOLE
TRIM DICE-5
DICE-5 HEAT DICE-7 TRIM DICE-9 TRIM
TREATMENT  DICF-8 DICE-10
HEAY DICE-7
TREATMENT  pDICE-3

*DESIGNER-INFLUENCED COST ELEMENT
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TITANIUM
1

|
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PANEL FANEL

STRAIGHT OR
CONTOURED,

STRAIGHT CONTOURED
0 CED-S-8 [ CED-T-1 ‘ L CED-T-2 0 CED.T-7
ZC/ CED.S-9 f CED-T-3 ‘ CED-T-4 p CED-T-8
L L.
e CED-§-10 CED.T-5 CED-T-6 % CED-T-9
o~ -
I
DICE* DICE® DICE®
STANDARD STANDARD STANDARD
CUTOUT DICE-1 JOGGLE DICE-3 curtouT DICE-1
FLANGED FLANGED FLANGED
HOLE DICE-4 HOLE DICE-4 HOLE DICE-4
TRIM DICE-11 TRIM DICE-12 TRIM DICE-14
DICE-13
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“"MANUFACTURING COST/DESIGN GUIDE (tMC

FORMAT SELECTION All
COMPARISON OF SHEET-METAL STRUCTUR/
PRODUCED BY SAME MANUFACTURING

ALUMINUM
STRAIGHT
OR
CONTOURED
STRAIGHT CONTOURED
BRAKE FORM RUBBER
| CED-M-1 - PRESS
CED-M-2 CED-M-3
RUBBER BRAKE AND
— PRESS ] ROLL
CED-M-3 CED-M-4
CED-M-5
BRAKE AND
STRETCH
CED-M-6
CED-M-7

n
~2

MATERIAL

STEFL

STRAIGHT
OR
CONTOURED
STRAIGHT

BRAKE
| FORM

CED-M-8

RUBBER
u PRESS

CED-M-9

CONTOUR




s,

ESIGN GUIDE (MC DG

ECTION AID
AL STRUCTURAI. SECTIONS
UFACTURING METHOD

AL //

4

HT

freD

CGNTOURED

RUBBER
] PRESS

CED-M-9

r o

BRAKE AND
STRETCH

CED-M 10

e

.

TITANIUM
STRAIGHT
OR
CON10OURED
STRAIGHT CONTOURED
BRAKE HOT
- FORM L PRESS
CED-M-11 CED-M-13
PREFORMED ROOM TEMPERATURE
| . HOT SIZE i} BRAKE AND HOT STRETCH
CED-M-12 C"0-M-14
HOT PREFORIA AND
L— PRESS - HOT SIZE
CED-M-13 CED-M-15




SHEET-METAL AEROSPACE DISCRETE PARTS

BASE PARTS ANALYZED
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SHEET-METAL AEROSPACE DISCRETE PART
DEMONSTRATION SECTION

TABLE 2. DESIGNER-INFLUENCED COST ELEMENTS (DICE)

Designation

on

Formats Sheat-Metal DICE
A Heat Treatment
B Standard Joggle
C Standard Flanged Hole
D Trim After Forming
E Panel Cut-out
F Trim Prior to Forming
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SHEET-METAL AEROSPACE DISCRETE PARTS
MANUFACTURING TECHNOLOGIES ANALYZED

TABLE 3. MANUFACTURING PROCESSES
EVALUATED IN "SHEET METAL
AEROSPACE DISCRETE PART"
DEMONSTRATION SECTION

Aluminum
Brake/Buffalo Rell
Brake Form
Brake/Stretch
Die Form
Drop Hammer
Farnham Roll
Rout (Flat Sheet)
Rubber (Hydro) Press
Stretch Form

Titanium
Brake Form (Room Temperature)
Brake (Room Temperature)/Hot Stretch
Creep Form
Farnham Roll
Hot Fress

Preform/Hot Size

Steel

Brake/Buffalo Roll

Brake Form (Room Temperature)

Brake/Stretch

Farnham Roll )
Rubber Press B

Stretch Form
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EXAMPLES OF UTILIZATION OF "SHEET METAL
AEROSPACE DISCRETE PART"
DEMONSTRATION SECTION

1. EXAMPLE. ALUMINUM FAIRING

Problem: Determine manufacturing cost (man-hours) of an

aluminum (2024) fairing of dimensions: 36" x 12"; see sketch below.

-

=
t

= 12 inches
36 inches

!
0]

(1) Utilize Format Selection Aid for Sheet-Metal.

(2) Determine format to use. In this case, Formazt CED-A-22

is required.

(3) Study format determining parameters and conditions
necessary for its use; relate to part. Tor CED-A-22
area (ftz) is needed. The dimensions of the part are
given as 36" x 12"; i.e., 3 ftz.

(4) From CED-~A-22, read values for the recurring cost ard

non-recurring tooling cost (NRTC):

64




aainy

e Recurring cost at unit 200 = 0 71 man-hours per part

¢ NRTC = 275 man-hours for 200 parts or 275/200

1.375 man-hours per part

e Lezarning curve factor to convert unit cost at 200 to
tumulative average cost for a 907 curve and 2 quantity
of 2090: 0.5248/0.4469 = 1,17 (see table below)

The b par: manufacturing cost is thus 0.71 (1.17) + 1.38 =

2.21 maa-ncours per part,

(5) Check for applicable Designer-Influenced Cost Elements
(DICL). TFormat indicates that no DICE are applicable
for the drop hammer manufacturing method for producing
part. This implies that the base part cost calculated
(4 above) is the final total manufacturing cost for the
discrete part {(exciuding direct material cost).
To obtain the cost (dollars), multiply 2.21 man-hours by the
labcr rate applicable at company. If material cost could be a factor,
fcr example, if this fairing were being compared with a fiberglass

fairing, material cost would be added to the manufacturing cost.

Factors to convert the MC/DG 20Gth unit cost to the
cumulative average cost for the design quancity and

learning curve invol =d.

LEARNING CURVE ~ %

Design
Quantaty 95 90 85 80 75 70 55

1 1.48 2.25 3.48 5.50 9.6¢ 15.00 27.00

10 1.33 1.79 2.47 3.48 5.04 7.53 11.67

25 1.25 1.59 2.65 2.71 3.68 5.13 7.43

50 1.19 1.4% 1.79 2.22 2,85 2.70 5.14
o | 113 1.30 | 1.52 1.80 2.18 2,73 3.51
200 1.08 1.17 1.39 1.45 1.66 1.95 2.36
350 1.04 1,08 1.14 1.22 3.33 1.48 1.70 }
500 1.01 1.02 £.05 1.09 1.15 1.24 .38 N
750 .98 .96 .96 .96 .97 1.01 1.09 5§
1000 .96 .92 .89 .87 .87 .88 .91 y
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2. EXAMPLE. STEEL SKIN

Problem: Determine manufacturing cost (man-hours) of a PH15-7Mo

steel skin, having circular curvature and two cut-~outs; see sketch below:

Dimensions:

o Sheet developed size: 60" (length)
36" (width)
e Cut-outs: A: 12"x6"
B:  4"x8"

(1) Utilize Format Selection Aid for Sheet Metal

(2) Determine formats to use. In this case, Formats
CED-S-8 for skin and DICE-1 for cut-outs.

(3) Study formats determining parameters and conditions
necessary for their use. In this case, area required,
in square feet, i.e., 15 ftz.

(4) Determine base part recurring and non-recurring tooling

costs (man-hours):

Bun s
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® Recurring cost at unit 200 = 1,55 man-hours per part
® NRTC = 74 man-hours for 200 parts = 0.37 man-hours
per part
e Learning curve factor = 1.17 (See Example 1, page 68).
Therefore, base part manufacturing cost is: 1.55 (1.17) +

0.37 = 2.1i8 man-hovurs.

(5) Analyze manufacturing cost for Designer-Influenced Cost
Elements (DICE). For this discrete part, cut-outs

(DICE-E) are called out on drawing. Format CED-S-8

indicates that DICE-E is applicable for the Farnhanm

Roll manufacturing method. Therefore, Format DICE-1

is required to determine the manufacturing cost of the
cut-outs.
DICE-1 indicates that a standard cut-out requires 0.036 man-

hours per foot of perimeter, i.e.,

i

o 2 feet of perimeter = 0.072 man-hours

0.108 man-hours.

n

o 3 feet of perimeter
Adding DICE man-hours to base part cost pow provides the manu-

facturing cost for the discrete part (not including direct material cost):
2.18 + 1.17 (0.072 + 0.108) = 2.39 man-hours per part.
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3. EXAMPLE. TITANIUM ZEE STIFFENER OR STRINGER

Problem: Determine manufacturing cost (man-hours) of a
straight 6A1-4V titanium "Z" section stringer, having the dimensions
as shown on the sketch on the following page.

(1) Utilize the Format Selection Aid for Sheet Metal.

(2) Determine the appropriate format for the base part;

in this case, CED-T-5,

(3) Study format determining parameters and conditions
required for use. In this case, part length, in feet,
and bend radius, are needed. For the purposes of this

i example, consider that either of the bend radius ranges
indicated on the format could be used, and determine
which design would be the lowest cost to manufacture.
Thus, we have the following two cases for the part:
| (a) Part length = 84 in. = 7 f¢t.

Bend radius (R) = > 5t.
(b) Part length = 84 in., = 7 f¢t.

Bend radius (R) = 2t < R < 5t.

{ (4) Determine base par* recurring and non-recurring tooling

costs (NRTC) (man-hours) for each case using CED-T-5 and the learaning curve

factor of 1.17 from Example 1, page 68:

(a) Using curve (1)
® Recurring cost at unit 200 = 0.55 man~hour per part
e NRTC

60 man-hours per 200 parts

0.3 man-hour per part.
Base part ccst = 0.55 (1.17) + 0.3 = 0.94 man-hour
per part.
(b) Using curve (2)
® Recurring cost at unit 200 = 2.05 man-hours per part
& NRTC

]

285 man-hours per 200 parts

1l

1.425 man-hours per part.
Base part cost = 2.05 (1.17) + 1.425 = 3,82 man-i:oursg

per part.
(5) Check for applicable DICE.
Example has flanged lightening holes (DICE-C) and trim prior
to forming (DICE-F).
For Case (a), format CED-T-5 indicates both DICE-C and DICE-F

are applicable to the brake forming method.
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For Case (b), the format indicates that no DICL are applicable
for the preform/hnt size method as this method permits inclusion of the
DICE at negligible additional cost. However, in the case of the brake
forming operation, the DICE require additional operations. Thus, Case
(b) has no additional cost for the flanged holes and the trim.

DICE costs for Case (a) are found by again utilizing the Format

Selection Aid and determining that formats DICE-3 and DICE-1l1 are appli-

cable. The parameters required are the number of flanged holes (DICE-3)
and perimeter trim (DICE-11). Eight flanged holes are required in the
airframe part and the perimeter trim required is approximately 180 inchkes.
The DICE costs are:

e Flanged holes: 0.09 man-hour per part

e Trim prior to forming: 0.455 man-hour per part.
Total manufacturing costs {(man-hours), excluding direct material cost,
are for:

e Case (a): 1.17 (0.55 + 0,09 + 0.455) + 0.3 = 1.58 man-hours

e Case (b): 3.82 man-hours.
This shows that it is less costly to produce the part with a bend radius

of > 5t, if the design constraints permit.
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FORMATS FOR
ALUMINUM SHEET-METAL AEROSPACE DISCRETE PARTS

LOWEST COST PROCESSES
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(1)
(2)

(3)

(4)

(1

(2)

(3)

FORMATS FOR ALUMINUM SHEET-METAL AEROSPACE
DISCRETE PARTS LOWEST COST PROCESSES

See ground rules for considerations and limitatioms.

Step occurring in recurring cost man~hours for lirneal shapes,

at length of 6 feet, due to requirement of two persons for certain

manufacturing operations.

Bend radius limitations for titanium:

e At room temperature forming >57T

e At elevated temperature forming >2T.

Materials selection: The user of the MC/DG is cautioned with

respect to the range of factors that can also play an important

role, besides manufacturing cost, in the selection of an airframe

material. The airframe design requirements may include:

e Elevated temperatures

@ Operation in corrosive environments

o Higher acquisition costs might be acceptable due to lewer
operations and maintenance costs.

All factors must be carefully considered by the designer prior

to making a selection of a material or design concept based on

the cost of manufacturing.

IMPORTANT DEFINITIONS

Base Part: A detailed part in its simplest form, i.e., without
complexities such as heat treatment, cut-outs, and joggles.

Designer-Influenced Cost Elements (DICE): Includes joggles,

cut-outs, lightening holes, and special tolerances that add cost
to the base part configuration. These additional costs are due
to the increased fabrication operations and tooling rezquired
over the standard manufacturing method (SMM) for the base part.

Detailed or Discrete Parts: A distinct airframe structural part

which may incorporate complexities, e.g., a base part plus DICE,

ready for assembly tc perform its required function in the airframe.
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TABLE 4 . FORMATS FOR ALUMINUM SHEET-METAL
AEROSPACE DISCRETE PARTS

Format
Number Format Title
CED-A-1 Aluminum Angle, Straight Member, Lowest Cost Process:
Brake Form
CED-A-2 Aluminum Angle, Cylindrically Contoured Member, Lowest
Cost Process: Brake/Roll
CED-A-3 Aluminum Angle, Non-Cylindrically Contoured Member,
Lowest Cost Process: Rubber Press
% CED~-A-4 Aluminum Channel, Straight Member, Lowest Cost Process:
g Brake Form
i § CED-A~S Aluminum Channel, Cylindrically Contoured Member,
f Lowest Cost Process: Brake/Roll
i CED-A-€ Aluminum Chamnel, Non-Cylindrically Contcured Member,
§ Lowest Cost Process: Rubber Press
i CEL~A-7 Aluminum Zee, Straight Member, Lowest Cost Process:
Brake Form
! CED-A-8 Aluminum Zee, Cylindrically Contoured Member, Lowest
§ Cost Process: Brake/Roll
CED-A-9 Aluminum Zee, Non-Cylindrically Contoured Member,
Lowest Cost Process: Rubber Press
’ § CED-A~10 Aluminum Lipped Zee, Straight Member, Lowest Cost
! Process: Brake Form
CED-A-11 Aluminum Lipped Zee, Cylindrically Contoured Member,
Lowest Cost Process: Brake/Roll
CED-A-12 Aluminum Lipped Zee, Non-Cylindrically Contoured
Member, Lowest Cost Process: Brake/Stretch
CED-A-13 Aluminum J, Straight Member, Lowest Cost Process:
Brake Form
CED-A-14 Aluminum J, Cylindrically Contoured Member, Lowest -
Cost Process: Brake/Roll -
CED-A-15 Aluminum J, Non-Cylindrically Contoured Member, .
Lowest Cost Process: Brake/Stretch -
79
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TABLE 4 . (Continued)

Format
Number

Format Title

CED-A-16

CED-A-17

CED-A-18

CED-A-19

CED-A-20

CED-A-21

CED-A-22

CED-A-23

CED-A-24

Aluminum Lipped Hat, Straight Member, Lowest Cost
Process: Brake Form

Aluminum Lipped Hat, Cylindrically Contoured Member,
Lowest Cost Process: Brake/Roll

Aluminum Lipped Hat, Non-Cylindrically Contoured
Member, Lowest Cost Process: Brake/Stretch

Aluminum Flat Sheet, Lowest Cost Process (Routing
Applicable Only)

Aluminum Cylindrical Curvature Skin, Lowest Cost
Process: Farnham Roll

Aluminum Non-Cylindrical Curvature Skin, Lowest Cost
Process: Stretch Form

Aluminum Fairing, Lowest Cost Process: Drop Hammer
Aluminum Rib, Lowest Cost Process: Rubber Press

Aluminum Beaded Fanel, Lowest Cost Process: Rubber
Press
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FORMATS FOR
TITANIUM SHEET-METAL AEROSPACE DISCRETE PARTS

LOWEST COST PROCESSES
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(1)
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(4)

(1)

(2)

(3)

FORMATS FOR TITANIUM SHEET~METAL /.EROSPACE
DISCRETE PARTS LOWEST COST PROCESSES

See ground rules for considecrations and limitations.

Step occurring in recurring cost man-hours for lineal shapes,

at length of 6 feet, due to requirement of two persons for certain

manufacturing operatious.

Bend radius limitations for titanium:

e At voom temperature forming >5T

e At elevated temperature forming >2T.

Materials selection: The user of the MC/DG is cautioned with

respect to the range of factors that can also play an important

role, besides manufacturing cost, in the selection of an airframe

material. The airframe des’'gn requirements may include:

e Elevated temperacures

e Operation in corrosive environments

¢ Higher acquisition costs might be acceptable due to lover
operations and maintenance costs.

All factors must be carefully considered by the desizner prior

to making a selection of a material or design concept based on

the cost of manufacturing.

IMPORTANT DEFINITIONS

Rase Part: A detailed part in its simplest form, i.e., without
complexities such as heat treatment, cut-outs, and joggles.

Designer-Influenced Cost Elements (DICE): Includes joggles,

cut-outs, lightening holes, and special tolerances that add cost
to the base part configuration. These additional costs are due
to the increased fabrication operstions and tooling required
over the standard manufacturing method (SMM) for the base part.

Detailed or Discrete Parts: A distinct zirframe structural part

which may incorporate complexities, e.g., a base part plus DICE,

ready for assembly to perform its yequired function in the airframe.
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TABLE 5 . FORMATS FOR TIYANII'M ShEXT~-METAL

AEROSPACE DISCRETE PARTS

Format

Number Format Title

CED-T-~1 Titanium Angle, Straight Member, Luwest Tost Fcocess:
Brake Form and Preform/Hot Size

CED-T-2 Titanium Angle, Contoured Member, Lowest Coct rocess:
Preform/Hot Size

CED-T-3 Titanium Channel, Straight Member, Lowest Cost Process:
Brake Form and Preform/Hot Size

CED-T-4 Titanium Channel, Contoured Member, Lowest Cost
Process: DBrake/Hot Stretch

CED-T-5 Titanium Zee, Straight Member, Lowest Cost Process;
Brake Form and Preform/Hot Size

CED-T~6 Titanium Zee, Contoured Member, Lowest Cost Process:
Brake/Hot Stretch

CED-T-7 Titanium Cylindrical Curvature Skin, Lowest Cost
Process: Farnham Roll

CED~T-8 Ticanium Non-Cylindrical Curvature Skin, Lowest Cost
Procecs: Creep Form

CED-T~9 Titanium Frame, Lowest Cost I'rocess: Hot Press
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FORMATS FOR

STEEL SHEET-METAL AEROSPACE DISCRETE PARTS

LOWEST COST PROCESSES
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(1)
(2)

(3)

(4)

(1)

(2)

(3)

FORMATS FOR STEEL SHEET-METAL AEROSPACE
DISCRETE PARTS LOWEST COST PROCESSES

See ground rules for considerations and limitatioams.

Step occurring in recurring cost man-hours for lineal shapes,

at length of € feet, due to requirement of two persons for certain

manufacturing operatiomns.

Bend radius limitations for titanium:

e At room temperature forming >5T

e At elevated temperature forming >2T.

Materials selection: The user of the MC/DG is cautioned with

respect to the range of factors that can also play an important

role, besides manufacturing cost, in the salection of an airframe

material. The airframe design requirements may include:

e Elevated temperatures

® Operation in corrosive environments

e Higher acquisition costs might be acceptable due to lower
operations and maintenance costs.

All factors must be carefully considered by the designer prior

to making a selection of a material or design concept based on

the cost of manufacturing.

IMPORTANT DEFINITIONS

Base Part: A detailed part in its simplest form, i.e., without
complexities such as heat treatment, cut-outs, and joggles.

Designer-Influenced Cost Elements (DZCE): Includes joggles,

cut-outs, lightening holes, and special tclerances that add cost
to the base part configuration. These additional costs are due
to the increased fabrication operations and tooling required
over the standard manufacturing method (SMM) for the base part.

Detciled or Discrete Parts: A distinct airframe structural part

which may incorporate complexities, e.g., a base part plus DICE,

ready for sssembly to perform its required function in the airframe.
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TABLE 5. FORMATS FOR STEEL SHEET-METAL
AEROSPACE DISCRETE PARTS

Format
Number

Format Title

CED-S-1

CED-8-2

CED-S-3

CED-S-4

CED-S-5

CED-S-6

CED-S-7

CED-5-8

CED-S-9

CED-S-10

Steel Angle, Straight Member, Lowest Cost Process:
Brake Fowm

Steel Angle, Contoured Member, Lowest Cost Process:
Rubber Press

Steel Channel, Straight Member, Lowest Cost Process:
Brake Form

Steel Channel, Contoured Member. Lowest Cost Process:
Rubber Press

Steel Zee, Straight Member, Lowest Cost Process:
Brake Form

Steel Zee, Cylandrically Contoured Member, Lowest Cost
Process: Brake/Roll

Steel Zee, Non-Cylindrically Contoured Member, Lowest
Cost Process: Rubber Press

Steel (ylindrical Curvature Skin, Lowest Cost Process:
Farnham Roll

Steel Non-Cylindrical Curvature Skin, Lowest Cost
Process: Stretch Form

Steel Frame, Lowest Cost Process: Rubber Press

B T Y I, . B et S A e T o
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FORMATS FOR

DESIGNER-INFLUENCED COST ELEMENTS (DICE)

FOR

SHEET-METAL AEROSPACE DISCRETE PARTS
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FORMATS FOR DLSzGNER-INFLUENCED COST ELEMENTS (DICE)
FOR SHEET-METAL AEROSPACE DISCRETE PARTS

NOTES RELATING TO SHEET-METAL FORMATS

(1) See ground rules for considerations end limitationms.
(2) Step occurring in recurring cost man-hours for lineal shapes,

at length of 6 feet, due to requirement of two persons for certain

manufacturing operations.
(3) Bend radius limitations for titanium:
e At room temperature forming >5T
e At elevated temperature forming >2T.

(4) Materials selection: The user of the MC/DG is cautioned with
respect to the range of factors that can also play an important
role, besides manufacturing cost, in the selection of an airframe
material. The airframe design requirements may include:
¢ Elevated temperatures
e Operation in corrosive environments
e Higher acquisition costs might be acceptable due to lower

operations and maintenance costs.
Ali factors must be carefully considered by the designer prior
to making a selection of a material or design concept based on

the cost of manufacturing.

IMPORTANT DzFINITIONS

(1) Base Part: A detailzd part in its simpleet form, i.e., without
complexities such as heat treatment, cut-outs, and joggles.

(2) Designer-Influenced Cost Elements (DICE): Includes joggles,

cut-outs, lightening holes, and special tolerances that add cost
to the base part configuration. These additional costs are due

to the increased faebrication operations and tooling required

T B R e

over the standard manufacturing method (SMM) for the base part.

(3) Detailed or Discrete Parts: A distinct airframe structural part

which may incorporate complexities, e.g., a base part plus DICE,

ready for assembly to perform its required function in the airframe.
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TARLE 7. FORMATS FOR DESIGNZR-INFLUENCED COST ELEMENTS (DICE)
I." SHFET METAL DISCRETE PART DESIGN
Format
Number Format Title
COST-DRIVER EFFECTS (CDE) FGRMAT
DICE-0 Guide to Designer-Influenced Cost Elements (DICE)
COST-ESTIMATING DATA (CED) FORMATS
DICE-1 Sheet-Metal Aerospace Discrete Parts: DICE Man-Hours
DICE-2 Sheet-Metszl Lineal Parts: Jcggle Recurring Cost
DICE-3 Sheet-Metal Aerospace Discrete Parts: Flanged Hole
Recurring Cost
DICE-¢ Aluminum: Stack Rout Prior to Forming
DICE-5 Aluminum Lineal Parts: Trim After Forming
DICE-6 Aluminum: Solution Heat Treat and Age to T62
DICE-7 Aluminum: Artificial Age to T81
DICE-8 Steel: Stack Mill Prior to Forming
DICE-9 Steel Lineal Parts: Trim After Forming
DICE-10 Steel Panels: Trim After Forming
DICE-~11 Titanium: Stack Mill Prio£—to Forming
DICE-12 Titanium Lineal Parts: Trim After Forming
DICE-13 Titanium Panels: Trim After Forming
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GUIDE TO DESIGNER INFLUENCED COST ELEMENTS (DICE)

" DESIGNER INELUENCED g LEGEND
COST ELEMENTS w Q z
A por - 2 < || RATING
' $la| |E]z]|2 :
S| =2 s3] X NOT APPLICABLE
E - g =.3! 3| & Q
R ol3 b B = I T NO ADDITIONAL
i < | w ciala|5l2E N | COSTINCL IN
A = I3 I - O z 2 BASE PART COST
L |BASE PART < 3 g g 8 o \:_!l ol B
MANUFACTURING METHOD Clo|8|E|S5{%|35|3|3 L (L:gw ADDITIONAL
ST
8RAKE FORM clefxiwjuelnle el
BRAKE/BUFFALO ROLL tioelx|uloelulfale]a A AVERAGE ADDI-
BRAKE STRETCH tle{x{uwlconN]alala TIONAL COST
DIE FORM N N N N L N L L L " HIGH ADDITIONAL
= | DROP HAMMER NN NjL oL Ix]a cosT
Z | FARNHAM ROLL Xl x|ejLv]|HijL|x]aA
§ ROUTED FLAT SHEET xlo]x[uoloelHloe]x]t
< | RUBBER PRESS NiIN|H{N][L]A]L]LI]L
STRETCH FORM xlvlafn]eInN]alx]|a
YODER ROLL L {x|H|jL|Hu|lafa]a
YODER STRETCH Lt | Rr|{N|JL]IN]AlL]A
Percentage Cost Ranges
For Above
BRAKE FORM R.T. AjlLt]Ixix]loe]|lw]lH]ln]L
T. BRAKE/HOT STRET X L | H H L Upto10%
R.T. BRAKE/HOT STRETCH® AL X | L H
3 A 10-30%
S | CREEP FORM® xlvlx|xloeloeinw|nlm
g H Above 30%
= | FARNHAM ROLL X|vi{x{x]oelH|H|[H]H
" [ HoT PRESS* NjL|IN|x]LlLUIN]N]L
PREFORM/HOT SIZE* NJLIN] x|l Nn]N]L
BRAKE ANDBUFFALOROLL [ A [L | x | nfL ] H|H!lalnd
BRAKE FORM R.T. AlLr x| nfotinuleie]e
= | BRAKE/R.T. STRETCH AlL|IX|INTL]A|H]|L]A
= | FARNHAM ROLL x|elxInjoe{wujalo]a
RUBBER PRESS NfN|N|N]JLfA]L|L]L
STRETCH FORM Xt x{N]JLlA]H]lA]L
*Denotes one Or more elevated temperature processing steps
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FORMATS FOR

COMPARISON OF MAMUFACTURING TECHNOLOGIES

FOR

SHEET-METAL AEROSPACE DISCRETE PARTS
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(3)

(4)

1)

(2)

(3)

FORMATS FOR COMPARISON OF MANUFACTURING TECHNOLOGIES
FOR SHEET-METAL AEROSPACE DISCRETE PARTS

NOTES RELATING TO SHEET-METAL FORMATS

See ground rules for considerations and limitations.

Step occurring in recurring cost man-hours for lineal shapes,

at length of 6 feet, due to requirement of two persons for certain

manufacturing operations.

Bend radius limitations for titanium:

e At room temperature forming >5T

e At elevated temperature forming >2T.

Materials selection: The user of the MC/DG is cautioned with

respect to the range of factors that can also play an important

role, besides manufacturing cost, in the selection of an airframe

material. The airframe design requirements may include:

e Elevated temperatures

e Operation in corrosive environments

e Higher acquisiticn costs might be acceptable due to lower
operations and maintenance costs.

All factors must be carefully considered by the designer prior

to making a selection of a matevial or design concept based on

the cost of manufacturing.

IMPORTANT DEFINITIONS

Base Part: A detailed part in its simplest form, i.e., without
complexities such as heat treatment, cut-outs, and joggles.

Designer-Influenced Cost Elements (DICE): Includes joggles,

cut-outs, lightening holes, and special tolerances that add cost
to the base part configuration. These adaitional costs are due
to the increased fabrication operations and tooling required
over the standard manufacturing method (SMM) for the base part.

Detailed or Discrete Parts: A distinct airframe structural part

which may incorporate complexities, e.g., a base part plus DICE,

ready for assembly to perform its required function in the airframe.
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TABLE 8 . FORMATS FOR SHEET-METAL COMPARING
MANUFACTURING PROCESSES

Format

Number Format Title

CDE-P-I Effect of Forming Process and Material on Part Forming
Cost: Straight Lineal Shapes

CDE-P~1lL Effect of Forming Process and Material oun Part Forming
Cost: Curved Lineal Shapes

CDE-P-III1 Effect of Forming Process and Material on Part Forming

Cost: Siugle Curvature Skin
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RELATIVE COST

EFFECT OF FORMING PROCESS

AND MATERIAL ON PART FORMING COST

SINGLE CURVATURE SKIN
RECURRING PLUS NON-RECURRING COSTS, INCLUDING TRIM

2024 ALUMINUM PH15-7Mo STEEL 6Al-4V TITANIUM
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% NON-RECURRING TOOLING

A.T. v ROOM TEMPERATURE
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FORMATS FOR
COMPARISON OF STRUCTURAL SECTIONS

SHEET-METAL AEROSPACE DISCRETE PARTS

H
3
=
=
=
=




(1)
(2)

(3)

(4)

(1)

(2)

(3)

FORMATS FOR COMPARISON OF STRUCTURAL SECTiCNS
SHEET-METAL AEROSPACE DISCRETE PARTS

NOTES RELATING TO SHEET-METAL FOKMATS

See ground rules for considerations and limitations.

Step occurring in recurring cost man-tours for lineal shapes,

at length of € feet, due to rcquirement of two persons for certain

manufacturing operations.

Bend radius limitations for titaniam:

3 A: room temperature forming >5T

e At elevated temperature forming >2T.

Materials selection: The user of the MC/DG is cautioned with

respect to the range of factors that can also play an important

role, besides manufacturing cost, in the selection of an airframe

material, The airframe design requirements may include:

° ievated temperatures

e Operatio.. in corrosive environments

e Higher acquisition costs might be acceptable due to lower
operations and maintenance costs.

All factors must be carefully considered by the designer prior

to making a selection of a material or design concept based on

the ccst of manufacturing.

IMPORTANT DEFINITIONS

Buse Part: A detailed part in its simplest form, i.e., without
complexities such as heat treatment, cut-cuts, and joggles.

Designer—Influenced Cost Elements (DICE): 1Includes joggles,

cut-outs, lightening holes, and special tolerances that add cost
to the base part configuration. These additional costs are due
to the increased fabrication operations and tooling required
over the standard manufacturing method (SMM) for the base part.

Detailed or Discrete Parts: A distinct ai: frame structural part

which may incorporate complexities, e.g., a base part plus DICE,

ready for assembly tc perform its required function in the airframe.
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TARLE 9 . FOKRMATS FOR SHEET-METAL COMPARING
STRUCTYRAL SECTIONS

Format
Number Format Title
CDE-M-1 Effect cf Cross-Section and Material on Part Forming
Cost: Straight Lineal Shapes
CDE-M-1I Effect of Cross-Section and Material on Part Forming
Cost: Curved Lineal Shapes
CLu-M-1 Straight Aluminum Lineal Shapes: Brake Form
CED-M-2 Straight Aluminum Lineal Shapes: Brake Form, Heat
Treated to T62
CED-M-3 Straight and Contoured Aluminum Lineal Shapes:; Rubber
Press
CED-M-4 Contoured Aluminum Lineal Shapes: Brake and Roll
CED-M-5 Contoured Aluminum Lineal Shapes: Brake and Roll,
Heat Treated to T€2
CED-M-6 Contoured Aluminum Lineal Shapes: Brake and Stretch,
Heat Treated to T62
CEL-M-7 Contoured Aluminum Lineal Shapes: Brake and Stretch,
Heat Treated vo T62
CED-M-8 Straight Steel Lineal Shapes: Brake Form
CED-M-9 Straight and Contoured Steel Lineal Shapes: Rubber
Press
CED-M-10 Contoured Steel Lineal Shapes: Brake and Stretch
CED-M-11 Straight Titanium Lineal Shapes: Brake Form
CED-M-12 Straight Titanium Lineal Shapes: Preform and Hot
Size £
CED-M-13 Straight and Contoured Titanium Lineal Shapes: Hot §
Press 3
CED-M-14 Contourad Titanium Lineal Shapes: Room Temperature
Brake and Hot Stretch
CED-~~- 15 Contoured Titanium Lineal Shapes: Preform and Hot

Size
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SECTION VIII

MECHANICALLY FASTENED ASSEMBLY DEMONSTRATION SECTION

Mechanical fastening assembly in airframe manufacture can be
responsible for 15 to 30 percent of the total vost. This is pointed out
in Referemce 2. Contributing factors to this cost are the proliferation
of fastener types and the different methods of installation. The number
of fastzmaers in attack-~type aircraft, for example, can range from 400,000
to 750,000; and in a transport aircrafi, the number can exceed several
million. 1In a typical transport aircraft, the cost of fasteners alone
can exceed $2.5 wmillion.

The above approximate percentages indicate the assembly cost
for the total airframe structure. However, a study of the weight and
cost distribution for majior subassemblies of aircraft (Reference 2)
indicates that the cust of assembly fo. the wing of a trcnsport aircraft
ranges from 30 tc 55 percent, and for a fuselage, from approximately 49
to 43 percent of the total cost. However, for other components, such
as leading and trailing edges and empennage, the cost is considerably
lower.

A vast anmount of information on assembly and associated cost
drivers costs is available to designers. Many thrusts. such as integrally
stiffened ranels and advanced compocite fabrication, have indeed been
stimulated by the urgency to reduce assembly costs. However, due to the
complex nature of assembly and the cost drivers responsibile for this high
cost, the designer must continually consider cost reduction of assembly
in all phasec of his work. Tools must be provided to him so that he can
conduct credible structural performance/manufacturing cost trade studies
and, at the same time, achieve the meaningful dialogues necesscry with
all disciplines involved in the aircraft system development, in particular,
manufacturing.

The results of Air Force cost reduction studies, References 1
and 2, provided the perspective required by industry and the Air Force
of mechanical assembiy cost and cost drivers. and these important
results emphasized the urgent necessity of developing a Demonstration
Section on Mechanically Fastened Asscmblies for immediate utilization

by the designer.

o b
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W b




To develop the required recurring and non-recurring costs (man-
hours) for the Mechanically Fastened Assembly Demonstration Section, @
series of assemblies were analyzed. However, it was not possible, at this
time, to develop a complete section on mechanically fastened assemblies
covering all the alternative materials, joint designs, fastener types,
and facilities. A series of panels were selected and studied in a con-
sistent manner based on MC/DG coalition-developed ground rules. These
assemblies are listed in Table 10 and are:

e Avionics panel

e Fuselage door

o Fuselage panel with cut-out.

The cost drivers in mechanically fastened assemblies are:

e Accessibility for fastener installation

¢ Jigging requirements

[{ ]

Sequencing recuirements
e Materials to be joined
e Sealing
e Quantity
e Stackup of parts
o Number of parts
e Number of fasteners
- Hand rivets
- Drivematic rivets
- Threaded fasteners
e Tolerances.
The cost drivers analyzed in this Demonstration Section are:
® Accessibility
e Materials joined
¢ Fastener count
e Part count

e Sealing.
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TABLE 10.

CODE FOR MECHANICALLY FASTENED ASSEMBLIES

Assembly Type

Material

Size
Classification

Size,
Inches

S S — [ ——

Avionics Bay Panel

Fuselage Panel

Fuselage Door

Avionics Bay Panel

Fuselage Panel

Fuselage Door

Aluminum-1

Aluminum~2

Aluminum-3

Titanium-1

Titanium-2

Titanium~-3

[ B @ V=g U 0w DO OoOw > U Ow P O aOwm

O

24x36
24x72
48x36
48%96

24x36
24x%72
48%36
48x%96

24x36
24x%72
48x36
48x%96

24x36
24x72
48%36
48x96

24x36
24x72
48x36
48x96

24x36
24x%72
48x36
48x96
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MECHANICALLY FASTENED ASSEMBLIES

DEMONSTRATION SECTION
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MECHANTCALLY FASTENED ASSEMBLIES DEMONSTRATION SECTION

CONTENTS

COST DRIVERS ANALYZED.

¢ e s e e

ASSEMBLIES ANALYZED.
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“MANUFACTURING COST/DESIGN GUIDE (MC/DG)”

COST—-DRIVERS IN MECHANICALLY FASTENED
ASSEMBLY FABRICATION

COST-DRIVERS ANALYZED IN PHASE 11{A)
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MECHANICALLY FASTENED ASSEMBLIES DEMONSTRATION SECTION
ASSEMBT "< ANALYZED
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MECHANICALLY FASTENED ASSEMBLIES
DEMONSTRATION SECTION

EXAMPLE OF UTILIZATION
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MECHANICALLY FASTENED ASSEMBLIES DEMONSTRATION
SECTION (EXAMPLE OF UTILIZATION)

EXAMPLE. MECHANICALLY FASTENED ASSEMBLY

Problem: Determine manufacturing cost (man-hours) for an
aluminum (2024) first-level assembly as shown on the sketch on the
following page.

(1) Utilize Format Selection Aid for Mechanically Fastened

Assemblies.

~
N
~

Determine formats to use. In this case, Formats

CED-MFA-1 and CED-MFA-3 are required.

(3) Study formats, determining narameters and conditions
necessary for use. To use CED-MFA~-1, number of
fasteners, fastening method, and sealing requirements
must be specified. The sketch indicates 133 fasteners
with faying surfa~e sealed. For this example, manual
and automatic viveting will be considered. To use
CED-MFA-3, the part perimeter (ft) and fastening methods
are required. The perimeter is 14.4 ft and again both
automatic and manual riveting will be considered by the
designer.

(4) Determine the values for recurring cost and non-recurring
tooling cost (NRTC) from the formats:

(a) Manual
e Recurring cost at unit 200 = 5.0 man-hours per part
e NRTC = 420 man-hours per 200 parts

= 2.10 man-hours per part

e Learning curve factor to convert unit cost at 200
to cumulative average cost for an 807 curve and a
quantity of 200 is 1.45.
Total cost = 1.45 (5.0) + 2.1
(b) Automatic

0]

9.35 man-hours per part.

e Recurring cost at unit 200

e NRTC

3.25 man-hours per part

440 man-hours per 200 parts

i

2.2 man-hours per part.

Total cost = 1,45 (3.25) + 2.2 = 6.91 man-hours per part.
(5) Check for applicabie BDICE. No applicable DICE are indicated,

and, therefore, the costs determined in (4) above are the

final total costs for as¢ .mbling the part.
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Man-Hours /Assembly (Recurring)

INSTALLATION C3STS FOR ALUMINUM RIVETS

80'_ I [ 1 H
| B | '
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! {
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60
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% 200 400 600 800 1000 1200
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FORMATS FOR

MZCHANICALLY FASTENED ASSEMBLIES

COST-DRIVER EFFECTS (CDE)
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TORMATS FOR MECHANiICALLY FASTENED ASSEMBLIES
COST-DRIVER EFFECTS (CDE)

IMPORTANT DEFINITIONS

(1) Base Part: A detailed part in its simplest form, i.e.,
without complexities such as primer or sealant on fastener
and/or faying surface.

(2) Designer-lnfluenced Ceost Elements (DICE): 1Includes primer

or sealant on fastener and/or faying surface, and special
tolerances that add -ost to the base part configuration.
These additional costs are due to the increased fabrication

operations and tooling required over the standard manufacturing

method (SMM} for the base part.

(3) Detailed or Discrete Parts: A distinct airframe structural

part which may incorporate complexities, e.g., a base part

plus DICE, ready for assembiv to perform its required

function in the airframe.

H
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TABLE 11. FORMATS FOR COST-DRIVER EFFECTS--

MECHANICALLY FASTENED ASSEMBLIES

Format

Number Format Title

CDE-MFA-1 Fasterer Installation Costs, Aluminum and Titanium
Assemblies: Recurring and Non-Recurring Tooling Costs

CDE-MFA-II Effect of Part Count and Fastening Method

CDE-MFA-III Effects of Sealing on Fastener Installation Cost for
Aluminum Assemblies

CDE-MFA-TV Effect of Sealing on Assembly Cost for Aluminum
Assemblies

CDE-MFA-V Effect of Sealing on Fastener Installation Cost for
Titanium Assemblies

CDE-MFA-VI Effect of Sealing on Assembly Cost for Titanium

CDE-MFA~VII

CDE-MFA-VITI

Assemblies

Influence on Manufacturing Cost of Installation
Methed, Assembly Material, and Fastener Type

Effect of Sealing on Fastener Installation Cost for
Aluminum and Titanium Assamblies
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EFFECT OF INSTALLATICN METHOD FOR
ALUMINUM AND TITANIUM ASSEMBLIES

5
Recurring
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EFFECTS OF SEALING ON FASTENER INSTALLATION

COST
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EFFECT OF SEALING ON ASSEMBLY COST
ALLUMINUM ASSEMBLIES

| —Installed wet and
~— ’__ fay surface sealed

N

7]
/

\\\\i\\\é)glnsml led wet

Per Fastener

o —
Installed dry> \§§

Relative Installation Cost

0 20 40 60 80 100
Percent Automatic Installation

CDE-MFA-IV
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COST

EFFECTS OF SEALING ON FASTENER INSTALLATION
TITANIUM ASSEMBLIES
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Relative Installation Cost Per Fastener

il

EFFECT OF SEALING ON ASSEMBLY COST
TITANIUM ASSEMBLIES

™~ Installed wet and fa
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CDE-MFA-VI
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COST EFFECTS OF INSTALLAT!ON*METHOD,
ASSEMBLY MATERIAL AND FASTENER TYPE

5
c L
§8 g2 § T
= B fps ==
£2 £ = 5 S S Bir
'g a5 2 % 238 Soe
4 =45 g 22 = gé
X = QX5 32 = R
: Q2 S 2 N ¥
e I Qe @ K o eIL
2 Titanium Titanium
)
}
Q
a
G -
(@)
o
s2 x
= e luminum Aluminum
% Titanium '
m e
Titanium Ajuminum
| Aluminum
* Installation includes the Recurring Cost
complete operation-hole . 3
preparation and fastener Non-Recurring Cost :
setting g
z
CDE-MFA-VII 2
199 5

e N R T e =t
=t e ==

i




Relative Cost Per Fastener

——— -

EFFECT OF SEALING ON FASTENER INSTALLATION
COST: ALUMINUM AND TITANIUM ASSEMBLIES

5.0 RiverInsialled Dry | Rivet InstailedWel  |River Installed Wel With
With Sealant or Seaiant;Also Faying
- Primer Surface Sealant
4.0 Man
Man
Man
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B Man
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FORMATS FOR
MECHANICALLY FASTENED ASSEMBLIES

COST-ESTIMATING DATA (CED)
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(1)

(2)

(3)

FORMATS FOR MECHANICALLY FASTENED ASSEMBLIES
COST-ESTIMATING DATA (CED)

IMPORTANT DEFINIT1ONS

Base Part: A detailad part in its simplest form, i.e.,

without complexities such as primer or sealant on fastener
and/or faying surface.

Designer-Influenced Cost Elements (DICE): Includes primer

or sealant on fastener and /or faying surface, and special
tolerances that add cost t~ the base part configuration.

These additional costs are due to the increased fabrication
operations and tooling required over the stardard manufacturing
method {SMM) for che base part.

Detailed or Discrete larts: A distinct airframe structural

part which may :ncorporate complexities, e.g., a base part
plas DICE, ready for assembly to perform its required

function in the airframe.
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‘ TABLE 12. FORMATS FOR COST-ESTIMATING DATA-~--
: MECHANZCALLY FASTENED A:SEMBLIES

Format

Number Format Title
% CED-MFA-1 Installation Costs for Aluminum Rivets

CED-MFA-2 Installation Crsts for Titanium Rivets
¢ CED-MFA-3 Non-Recurring Tooling Cost for Aluminum and Titanium

Assemblies
}
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Man~Hours /Assembly (Recurring)

INSTALLATION COSTS FOR ALUMINUM RIVETS

80 l T
. . Installation Method Curve
Installation Auto- | 80% Auto
7011 Requirements | Manual | matic | 20% Manuul
~— |
Dry 5 l 2
60
Primer or
sealant on 6 I 3
fastener only
50" Sealant on
fastener and 7 3 4
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40
{ For non-recurring
tooling costs see 7
CED-MFA-3 P
30— 7 / 6 —
//’//,,/
/ v o — O
20 / v = ~T—4
fé/ /’:///l //——-——'3
- [~ 12
10 - ‘é;{z/‘% — T 1
//,-—"w"
7. =
ok
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Total Fasteners in Assembly
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INSTALLATION COSTS FOR TITANIUM RIVETS

Man-Hours /Assembly (Recurring)

St I N N O O
. Installation Method Curve
Installation Avio- 1 80% Auto
. L] - u
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| |
Dry 6 i 3
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sealant on 7 | 4
fastener only
60— Sealant on
fastener and | 8 2 5
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50— e e
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Non - Recurring Tooling (MH)

1000

800

g

H
[®)
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200

NON - RECURRING TOOLING COST FOR
ALUMINUM AND TITANIUM ASSEMBLIES
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Ve'd
Automatic Riveting 7/1/
A% \ |
‘:// Manual Riveting

4 6 8 10 12 14 16 18 20 22 24
Perimeter ,feet

CED-MFA-3
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SECTION IX

ADVANCED COMPOSITE FABRICATION DEMONSTRATION SECTION

Advanced composite materiais, in particular, graphite/epoxy,
have demonstrated remarkable service pevformance in aircraft primary
structures on the F-14, F-15, F-16, and other aircraft. A significant
example of the use of advanced composites is the movable horizontal
stabilizer. Advanced composites are now rapidly emerging as a primary
candidate material for application in the next generation aircraft.
Management and designers are, therefore, making commitments to manu-
facture complete wings in these fibrous materials. The trends suggest
that the next generation aircraft could contain from 30 to 50 percent
of advanced composite materials.

There are a number of important opportunities where composites
not only provide greatly improved structural efficiency in terms of
strength, stiffness, life time, and, therefore, lower weight than
metallic structures, but also cost reduction particularly due to the
increasing cost of strategic metallic materials and also for complex
structural configurations, such as fuselages of compound curvature,
where advanced composites are becoming increasingly cost competitive.
The following payoffs or improvements appear realistic for aft fuselage
structures:

e Weight savings: 20-30 percent

e Cost savings: 15-25 percent

e Life extensions projected

e Improved reliability projected

¢ Improved maintainability projected.

Now that management and designers are confident with the use
of composite materials based on the outstanding performance to date, it
is timely to develop an MC/DG Demonstration Section for "Advanced
Composites Fabrication", meeting the MC/DG objectives identified in the
introduction to this report.

Designers need to compare composite materials with aluminum,
steel, and titanium sheet candidates for many airframe components. The
demonstration section or advanced composites can be utilized in trade

studies comparing manufacturing cost of sheet metal with composites
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based on similar ground rules and conditions and, therefore, providing
the required credibility of the comparisons, which is most important.
Furthermore, the designer will want to develop not only more, but
larger, structures designed as a complete structural system rather
than replacing metals with composites under severe limitations, i.e.,
meeting Form, Fit, and Function requirements. While the Advanced
Composites Fabricaticn Guide (ACFG) and the Advanced Composites Cost
Estimating Manuals (ACCEM) are extremely important milestones in the
development and utilization of composite structures, it was evident that
designer oriented tools meeting these special design criteria of the
MC/DG are urgently required to supplement these other data sources as
accomplished with sheet metal materials.

In AFML-TR-76-227, "Manufacturing Cost/Design Guide", the cost
drivers were analyzed for fiberglass materials and also designer-oriented
formats were proposed. This section for composites in the MC/DG "model",
recommended under the prior program, was reviewad by the team and the

following cost drivers were specified for advanced compesite materials:

e Fiber types
e Resin systems
o Fiber mix (hybrids)
e Part function
e Part type
e Part size
e Lot size
® Number of plies
o Orientation of plies
e Overlaps
¢ Gaps and cut-outs
e Facilities
- Cocuring

Staged assembly
Manual larination

Automatic lamination

o Tooling concepts

o Quality requirements.
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ADVANCED COMPOSITE FABRICATION

DEMONSTRATION SECTION
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ADVANCED COMPOSITE FABRICATION DEMONSTRATION SECTION
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“MANUFACTURING COST/DESIGN GUIDE (MC/DG)”
ADVANCED COMPOSITES FABRICATION

COST—-DRIVERS

® PART TYPE AND FUNCTION

® PARTSIZE

® NUMBER OF PLIES

@® ORIENTATION OF PLIES

® OVERLAPS

® GAPS

® LOTSIZE

@ FIBER TYPES

@ RESIN SYSTEL?

® FIBER MiX (HYBRIDS)

® QUALITY REQUIREMENYS

® COCURED VERSUS STAGED ASSEMBLY
® AUTOMATIC VERSUS MANUAL LAM{NATION
@ FACILITIES

® TOOLING CONCEPT
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ADVANCED COMPOSITE FABRiCATION

DEMONSTRATION SECTION

PARTS ANALYZED
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“MANUFACTURING COST/DESIGN GUIDE (MC/DG)"

FORMAT SELECTION AID
ADVANCED COMPOSITE FABRICATION

CDE "
EFFECT OF
MATERIAL FORM
CDE-G/E-t
TAPE
- WIDTH
| CDE-G/E-ll
L

e

NUMBER OF BENDS,
SHAPE AND TOOL TYPE

CDE-G/E-H

RADIUS OF
CURVATURE

CDE-G/E-IvV

NUMBER OF PLIES,
ORIENTATION AND
DEVELOPED WIDTH

ON

HAT SECTION
CDE.G/E-V

"J" SECTION
CDE-G/E-Vi

“I” SECTION
CDE-G/E-Vii

CBE
OR
CED

CeD

5

LINEAL SHAPES

LINEAL SHAPE,
PANEL PART

PANEL PARTS

“"HAT" SECTION

CED-G/E-1
CED-G/E-2

“J’ SECTION

CED-G.E-3
CED-G/E-4

“I' SECTION

CED-G/E-5
CED-G/E-6

DICE
STRIP PLIES
DICE-G/E-1

CUTOUTS &
DOUBLERS

DICE-G/E-2
DICE-G/E-3
DICE-G/E-4
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SKIN

CED-G/E-7
CED-G/E-8

S

DICE
STRIP PLIES
DICE-G/E-1
CUTOUTS &
DOUBLERS
DICE-G/E-2
DICE-G/E-2

DICE-G/E-4

Rt —————————




%
L(MC DGY”

AID

ASSEMBLY

CATION
CeD
LINEAL SHAPE,
PANEL PART
OR
ASSEMBLY
PANEL PARTS
HAT SECTION SKIN
CED-G/E-1 — CED-G/E-7
CED-G/E-2 CED-G/E-8
J SECTION DICE
CED-G 'E-3 STRIP PLIES
CED-G7E-4 DICE-G/E-1
\ - CUTOUTS &
DOUBLERS
| SECTION DICE-G/E-2
DICE-G/E-3
CED-G/E-5 DICE-G/E-4
CED-G. E-6
DICE
STRIP PLIES
DICE-G/E-1
cutouTs &
DOUBLERS
DICE-G/E-2
DICE-G/E-3
DICE-G/E-4

ASSEMBLY
(INCL BAGGING)

CED-G/E-9

CED-G/E i0
CED-G/E-11
CED-G-&-12




ADVANCED COMPOSITES FABRICATION

DEMONSTRATION SECTION

EXAMPLE OF UTILIZATION
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ADVANCED COMPOSILES FABRICATION DEMONSTRATION SECTION
(EXAM¢LE CF UT1LIZATION)

EXAMPLE. GRAPHITE/EPOXY "1" SECTION

Problem: Determine manufacturing cost (man-hours) for the
composite "I" section shown below, in "B" stage condition. The non-

recurring tooling costs are to be zmortized for 200 parts.

Cop
r'—_""' 1.50 7 \ Strip Plies

Y
N/2j MO
Rcmus///
Filler

(TYP) |

N=2C
Strip Plies =i0
L=84in.

e }r——— N 2 .OO

2% Radius
e L/(?ypf EiN,Z
1
| R

275 ———=

£

(1) Utiliize Format Selection Aid for Advanced Composites.
(2) Determine which formats are required. In this case,
CED-G/£-5 and CED-G/E—6 are used.

(3) Study formats to determine param~ters ana conditions

Rt s w9

required for use. Format CED-G/E-5 requires part
length (ft), number of plies, developed width of the
flat pattern (in), and cure stage. Format CED-G/E-6
requires part length (ft) and developed width (in).
For this example, part length is 7 ft, aumber of plies
is 20, developed width is 9.75 in., and it is in "B"

stage cure.
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COMPOSITE I SECTION
TOTAL NON-RECURRING TOOLING COST/PART

¢ Part Length
Influenced By{ ¢ Developed Width

S

/3

Tooling 4| = &=
Surface

800
+ 700
O
O
2600 — Developed
I I 1300~
— —_ 7 7
o 10.00 X;/
E 400 BOO?ES/‘VJ
S ol 1Y
4/ 7 |
T :é i
& 200 i
< |
g 100 :
T o L
0] 2 4 6 8 0 12 14 |6

Part Length, ft

See Ground Rules for Limitations and Considerations
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(4) Using CED-G/E-5 and CED-G/E-6, determine the recurring

cost and non-recurring toocling cost (NRTC) for the part.

e Recurring cost at unit 200 = 11.5 x 0.84 = 9.66
man-hours per part

e NRTC = 360 man-hours = 1.80 man-hours per part

o Learning curve factor to convert unit 200 to
cumulative average cost for an 857 learning curve
and a quantity of 200: 1.30,

The base part cost, thus, is: 9.66 (1.30) + 1.80 =

14.36 man-hours per part.

(5) Checking for applicable DICE. This part has strip plies.
The Format Selection Aid indicates that format DICE-G/E-1
must be used. This format requires length (ft), number
of plies, and width (in.) of each ply. These values
are:

e lLength = 7 ft
« Number of plies = 10
o Width = 1.5 in.
From the format, the cost of the strip plies is
0,6 man-hcurs per part.
The total manufacturing cost for the part (excluding direct

material cost) is, therefore, 14.36 + (0.6) 1.30 = 15.14 man-hours per part.
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FORMATS FOR

ADVANCED COMPOSITE FABRICATION

COST-LRIVER EFFECTS (CDE)
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(1)

(3)

FORMATS FOR ADVANCED COMPOSITE FABRICATION
COST-DRIVER EFFECTS (CLE)

IMPORTANT DEFINITIONS

Base Part: A detailed part in its simplest form, i.e., without

complexiti . such as strip-plies, cut-outs, and doublers.

Designer-Influenced Cost Elements (DICEj: Includes strip-plies,
cut-outs, doublers, and special tolerances that add cost to the
base part configuration. These additional cests are due to the
increased fabrication operations and tooling required over the
standard manufacturing method (SMM) for the base part.

Detailed or Discrete Parts: A distinct airframe structural part

which may incoxporate complexities, e.g., a base part plus DICE,

ready for asgsembly to perform its required function in the air-
frame.
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TABLE 13. FORMATS FOR COST-DRIVER EFFECTS--
ADVANCED COMPOSITES

Format

Number Format Title

CDE-G/E-I Effect of Material Form on Layup Cost

CDE-G/E-11 Effect of Tape Width on Cost of Lineal Shapes

CDE~G/E-II1 Effect of Numoer of Bends, Shape, and Tool Type on
Tooling Cost cof Lineal Shapes

CDE-G/E-1V Effect of Radius of Curvature on Recurring Cost of
Lineal Shapes

CDE-G/E-V Effect of Number of Plies, Ply Orientation, and
Daveloped Width on Recurring Cost of Lineal Hat
Section

CDE-G/E~VI Effect of Number of Plies, Ply Orientation, and
Developed Width on Recurring Cost of Lineal "J"
Section

CDE-G/E-VIIL Effect of Number of Plies, Ply Orientation, and
Developed Width on Recurring Cost of Lineal "I"

Section
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W

EFFECT OF MATERIAL FORM ON LAYUP COST

Relative Cost
(Labor and Material)

2.0

wd
(=]

0.5

3"
Tape

12"
Tape

48"

Preply

LAMINATE SIZE: 48" x 144"
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[r———

EFFECT OF TAPE WIDTH ON COST OF LINEAL SHAPES

Notes:

e Part Length = 48"
o No Strip Plies

2
T -
s 3 Inch Wide Ta’p:a"..
! —

-

2 =
S -
£ P
£ 1 12 Inch Wide Tape —
g
o
2
5
2]
o

0 1

0 1 2 3 4 5 6 7 8 9 10
Developed Part Width ~ In.

CDE-G/E-ll
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FORMATS FOR

ADVANCED COMPOSITE FABRICATION

COST ESTIMATING DATA (CED)
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(1)

(2)

(3)

FORMATS FOR ADVANCED COMPOSITE FABRICATION
COST ESTIMATING DATA (CED)

IMPORTANT DEFINITIONS

Base Part: A detailed part in its simplest form, i.e., without

somplexities such as strip-plies, cut-outs, and doublers.

Designer-Influenced Cost Elements (DICE): Includes strip-plies,
cut-outs, doublers, and special tolerances that add cost to the
base part configuration. These additional costs are due to the
increased fabrication operations and tooling required over the

standard manufacturing method (SMM) for the base part.
Detailed or Discrete Parts:

A distinct airframe structural part

which may incorporate complexities, e.g., a base part plus DICE,

ready for assembly to perform its required function in the air~
frame.
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TABLE 14. FORMATS FOR COST-ESTIMATING DATA-~
ADVANCED COMPOSITES

Format

Number Format Title

CED-G/E-1 Composite Hat Section Recurring Cost/Part

CED-G/E-2 Composite Hat Section Total Non-Recuriing Tooling
Cost/Part

CED-G/E-3 Composite "J" Section Recurring Cost/Part

CED-G/E-4 Composite "J" Section Total Non-Recurring Tooling
Cost/Part

CID-G/E-S Composite "I" Section Recurring Cost/Part

CED~G/E-6 Composite "I" Section Total Non-Recurring Tooling
Cost/Fart

CED-G/E-7 Single Curvature Skin Recurring Cost/Part

CED-G/E-8 Single Curvature Skin Non-Recurring Tooling Cost/Part

CED-G/E-9 Assembly Time: Cocured Panel

CED-G/E-10 Assembly and Bagging [ime: Cocured Panels

CED-G/E-11 Non-Recurring Tooling Cost: Reusable Rubber Bags

CED-G/E-12

Non-Recurring Tooling Costs: Silastic Plugs
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COMPOSITE I SECTION
TOTAL NON-RECURRING TOOLING COGT/PART

¢ Part Length
Influenced BY{ * Developed Width

ST

e —
Tooling/f% :oj]ﬁc;
Surface . vssss

AN

"~y

800
+ 700
S
=600 f— Developed
— I
3 o Widih 300 g
'c_m [0.00“er
£ 400 8.00—4 -~
= /?
8 300— e
, =
< 200
p=a
S 100
©
0
0O 2 4 6 8 10 12 14 16

Part Length, ft

See Ground Rules for Limitations and Considerations

CED-G/E-6
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FULLY CURED RECURRING COST, MH
(FOR “B” STAGE RECURRING COST, MULTIPLY BY 0.84)

&

8

8

ey
[~

SINGLE CURVATURE SKIN
RECURRING COST/PART

® AREA

©® NUMBER OF PLIES
® CURESTAGE

INFLUENCED BY

0 1 2 3 4 5
SKIN AREA X 103, IN.2

-]
~

CED-G/E-7
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700
600 “ A
3/ /L(/ //
T ‘ '//
= 500 P2
2 /{' , )
O Tooling SV
2 Surface N
£ 400 @
o X /
= N
2 7
3 300 /
D /
¢ )2
& S
200 /
100
2 4 6 8 10 12

Skin Length ~ ft.

See Ground Rules for Limitations and Considerations

CED-G/E-8
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ASSEMBLY TIME—-COCURED PANEL

7.0 /\
6.0 // -
wn 5.0 Pra
o e
3 /
I 4.0 _A
2 // BAGGING TIME—AUTOCLAVE
REUSABLE BAG
2 30 —
2.0 /
1.0 /
S
0 1000 2000 3000 4000 5000 6000 7000
AREA ~ in?
0.6
/
0.5 -
/
/
w 0.4
S T EXPANDABLE TOOLING
S 13 P ASSEMBLY COST
[ d /
2
g /
2 0.2 "
0.1 ——//
0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400
AREA ~ in2
CED-G/E-9
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ASSEMBLY AND BAGGING TIME—COCURED PANELS

§ 7.0 / —
|
H /
1 6.0 — .
5.0 A
4 [~
=) /
o 7
T 4.0
2 // BAGGING TIME—AUTOCLAVE
REUSABLE BAG
2 30 —
2.0
-
1.0 /
S
0 1000 2000 3000 4000 5000 6000 7000
AREA ~ in?
0.6
0.5
h
n 04
[+ o o=
2 T
2 0.2 —
UNIT COST
// HANDLING/PREFIT/JOINING OF DETAILS
0.1 — -
0 100 200 300 400 500 600 700 80C 900 1000 1100 1200 1300 1400
AREA ~ in?
CED-G/E-10
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100

NON-RECURRING TOOLING COST
REUSABLE RUBBER BAGS

90

80

SIMPLE ~FLAT, LOW CONTOUR

AVERAGE~LOW CONTOUR, EDGE BUILDUP

AVERAGE-COMPLEX~ DEEP CONTOURS AND FLANGES

COMPLEX~COMPOUND CONTOURS, REVERSE
INTERNAL BENDS, SHARP RADII

N

/

70

60

MULTIPLY VALUES BY
4 FOR 200 PARTS

o
\

50

MAN-HOURS

40

/

30

/
e

NN

20

~

.

WK

10

/

AN

e i

10 20 30
AREA ~ ft?

40

CED-G/E-11
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MAN-HOURS

16

14

12

10

NON-RECURRING TOOLING COST
SILASTIC PLUGS

LARGE VOLUME .«/

N

e

Jol

/

/

L

, SMALL VOLUME_
* -ﬂ"“—_——_—

-y

——-"““"-‘—

"

1 INCREASE IN SETUP TIME
] | 1 {

100 200 300 400 500 600 700 800 900 1000
] | ] 1 ]

1000 2000 3000 4000 5000
CUBIC INCHES

CED-G/E-12
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FORMATS FOR
ADVANCED COMPOSITE FABRICATION

g DESIGNER-INFLUENCED COST ELEMENTS (DICE)
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(1)

(2)

(3)

FORMATS FOR ADVANCED COMPOSITE FABRICATION
DESIGNER-IJFLUENCED COST ELEMENTS (DICE)

IMPORTANT DEFINITIONS

Base Part: A detailed part in its simplest form, i.e., without
complexities such as strip-plies, cut-outs, and doublers.

Designer-Influenced Cost Elements (DICE): Includes strip-plies,

cut-outs, doublers, and special tolerances that add cost to the
base part configuration. Thece additional costs are due to the
increased fabrication operations and tooling required over the
standard manufacturing method (SMM) for the base part.

Detailed or Discrete Parts: A distinct airframe structural parc

which may incorporate complexities, e.g., a base part plus DICE,
ready for assembly to perform its required function in the air-

frame.
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TABLE 15. FORMATS FOR DESIGNER-INFLUENCED COST ELEMENTS--
ADVANCED COMPOSITES
Format
Number Format Title
DICE-G/E~-1 Strip Plies (Flat Parts) for Cocuring: Recurring
Cost/Part
DICE-G/E-2 Cutout-Hole Recurring Cost/Detail

DICE-G/E-3

DICE-G/E-4

DICE-G/E-5

DICE-G/E-6

Hole Reinforcing Doubler for Cocuring: Recurring
Cost/Detail

Cutout Reinforcing Doubler for Cocuring: Recurring
Cost/Detail

Clip for Cocuring: Recurring Cost/Part

Integral Tab: Recurring Cost/Detail
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CLIP FOR COCURING
RECURRING COST/ PART

fePerimeter
Influenced By tONumbef of Plies

[ )/‘;l/Flat Pattern Area
1 "“"’“"
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o o e

Perimeter

0.08 /
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Perimeter, Inches
SEE GROUND RULES FOR LIMITATIONS AND CONSIDERATIONS

2 DICE-G/E-5!




INTEGRALTAB
RECURRING COST/DETAIL

*Perimeter
Influenced By {oNumber of Plies}

Cost Includes Trim Only

0.05 / /,
/
004 & < /
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< s
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O
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3 / 7
2 0.02 / v
x
[/ -
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Perimeter, inches

SEE GROUND RULES FOR LIMITATIONS AND CONSIDERATIONS
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SECTION X

AIRFRAME TRADE STUDIES

A series of fuselage shear panels were analyzed with regard
to weight and cost savings by three team members utilizing the manu-
facturing man-hour data developed in the three demonstration sections
described earlier in this report, i.e., "Sheet-Metal Aerospace Discrete
Parts", '"Mechanically Fastened Assemblies", and "Advanced Composi:es
Fabrication".

The primary objectives of the fuselage shear panel trade
studies were:

e To demonstrate the use of the MC/DG in an industrial

environment designing typical airframe structures

e To determine whether the manufacturing cost (man-hour)

formats, providing CDE and CED information, meet the
format design criteria established for their development

® To determine whether the CDE and CED formats provide

the accuracy required by designers in conducting
realistic comparisons of airframe configurations
utilizing both metallic and composite materials.
Fuselage panel designs were studied in the following structural
materials by the design departments in each of the three companies:
e Aluminum alloy--by General Dynamics Corporation, Fort
Worth Division

¢ Titanium alloy--by Lockheed-California Company

e Graphite/epoxy--by Rockwell International, Los Angeles
Division.

The fuselage panel trade studies were reviewed by:

e Boeing Commercial Airplane Company

e Northrop Corporation, Aircraft Group.

While each company utilized its own design approaches and pro-
cedures in conducting the trade studies, the following trade study flow
diagram, Figure 22, provides an overview of the general approach. It will
be noted that there are six major steps in conducting the cost/weight

trades. These are:
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(1) Concept Development
- Skin panel sizing
- Frame shape selection
- Number of frames required
- Stringer shapes
- Number of stringers required
-~ Candidate manufacturing methods to produce each
discrete part
(2) Determination of manufacturing coct for each panel
configuration
(3) Determination of assembly costs for each configuration
(4) Determination of weight (lbs) for each panel config-
uration
(5) Determination of total cost, including materials and
tooling
(6) Presentation of manufacturing man-hours and structural
weight on design charts and tables to facilitate

selection of the cost-effective designs.

To determine the total program costs for both discrete parts
and assemblies, an MC/DG cost worksheet has been prepared and can be
used by industry. This worksheet is shown in Figure 23, A description
of the worksheet is given in Table 16.

The three design studies on aluminum, titanium, and advanced
composite fuselage panels are summarized in Appendices G, H, and I.

The trade studies provided the opportunity to utilize a good
cross-section of designer-criented formats in each of the MC/DG demon-

stration sections, The applicable formats are listed in Tables 16 to 19.

The following are the conclusions derived from the trade studies:
e The practicability of the MC/DG demonstrated
e MC/DG provides a quick, efficient designer's tool which:
- Develops costs to identify lower-cost designs
- Reduces design time for screening candidate design
- Improves schedule compliance
e Use of MC/DG in obtaining manufacturing costs and performing

simple cost estimates was well demonstrated
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TABLE 16. DESCRIPTION OF MC/DG COST WORKSHEET FOR DESIGNERS

Part No.: Identificaticn, if available

Description: Brief Description—-Stiffener, Zee, J section, ete,

Column Input Procedure
1 Labor From CED section determine man-hours
per part at 200 units
2 Learning curve (LC) Based upon learning curve percentage

factor and design quantity. Factor provided
by user company.

3 Labor rate Current manufacturing labor rate
including direct labor fringe bene~
fits and overhoad charges
4 Labor recurring costs Product of Column 1 times Column 2
(RC) times Column 3
5 Material cost Based upon furnished data in company
utilizing MC/DG; enter materinl cost
per part in dollars
6 Recurring cost (RC) Total of Columns 4 and 5
per part
7 Parts per aircraft Number of identical parts per air-
craft
8 Design quantity Number of aircraft in buy considered
9 Program recurring Product of Column 6 times Column 7
cost (RC) times Column 8
10 Non-recurring tooling From MC/DG, enter total NRTC in man-—
cost (NRIC) hours :
11 Labor rate Same as Column 3 i
12 Program non-recurring Column 10 times Column 11 §
tooling costs (NRTC) z
13 Program cost Sum of Column 9 and Column 12 %
14 Design quantity Same as Column 8 §
15 Cost per aircraft Column 13 divided by Column 14 E |
E|
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TABLE 17.

Formats Utilized

ALUMINUM FUSELAGE PANEL TRADE STUDY

Concept
Number Cost Item MC/DG Format Number
Base Skin CED-A-20
IA Skin CED-A-20

Frames CED-A-8

Joggles DICE-2

Assembly CED-MFA--1 and CED-MFA-2

IB Skin CED-A-20

Frames CED-A-8

Joggles DICE-2

Cut-outs DICE-1

Assembly CED-MFA-1 and CED-MFA-3
IIA Skin CED-A-20

Frames CED-A-8

Stringer CED-A-4

Clips CED-A-1

Joggles DICE-2

Trim After Forming DICE-5

Assembly CED-MFA-1 and CED-MFA-3
118 Skin CED-A-21

Frames CED-A-9

Stringers CED-A-6

Clips CED-A-1

Joggles DICL-2

Trim After Forming DICE-5

Assembly CED-MFA-1 and CED-MFA-3
ITIA Skin CED-A-20

Stringers CED-A-4

Joggles DICE-2

Assembly CED-MFA-1 and CED-MFA-3
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TABLE 18.

TITANIUM FUSELAGE PANEL TRADE STUDY

Formats Utilized

Concept
Number Cost Item MC/DG Format Number
I Skin CED-T-7
Stringers CED-T-5
Frames CED-T-6
Frame Angles CED~T~2
Clips CED-T-1
Trim After Forming DICE-13
Assembly CED-MFA-2 and CED-MFA-3
11 Skin CED-T-7
Stringers CED-T-5
Frames CED-T-6
Frame Angles CED-T-2
Clips CED-T-1
Trim After Forming DICE-13
Assembly CED-MFA-2 and CED-MFA-3
I1T Skin CED-1-7
Stringers* Future MC/DG Requirement
Frames CED~-T~-6
Frame Angles CED-T-2
Clips CED-T-1
Trim After Forming DICE-13
Assembly CED~MFA-2 and CED-MFA-3
v Skin CED~T-7
Stringers® Future MC/DG Requirement
Frames CED-T-6
Frame Angles CED-T-2
Clips CED-T-1
Trim After Forming DICE-13
Assembly CED-MFA~2 and CED-MFA-3
v Skin CED-T-7
Stringers* Future MC/DG Requirement
Frames CED-T-6
Frame Angles CED-T-2
Clips CED-T-1
Trim After Forming DICE-13

Assembly

CED-MFA~2 and CED-MFA-3

* Mauufacturing man-hours determined by conventional cost-
estimating procedures.

i a sl el
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TABLE 18. (Continued)

Coacept
Number Cost ltem MC/DG Format Number
Vi Sxin CED-T-7
Stringers* Future MC/DG Kequirement
Frames CED-T-6
Frame Angles CED-T-2
Clips CED-T-"
Trim After Forming DICE-13
Assembly CED-MFA-2 and CED-MFA-3
VIL Skin CED-T-7
Frame CED-T-6
Trim After Forming  DICE-13
Assembly CED-MFA-2 and CED-MFA-3

* Mavufacturing maa-hours determined by conventional cost-

estimating procedures,




TABLE 19. ADVANCED COMPOSITES TRADE TUDY

Formats Utilized

Concept Cost Item > Format Number

Lightweight/High

Skin

CED-G/E-7 and

CED-G/E-8

Complexity Hat Stringers CED-G/E-1 and CED-G/E-2
Mechanically~Fastened "J" Frames CED-G/E-3 and CED-G/E-4
Strip Plies DICE-G/E-1
Cut-outs DICE-G/E-2
Cut-out Doublers DICE-G/E-4
Assembly (Mechanical) CED-MFA-2 and CED-MFA-3
Lightweight/High Skin CED-G/E-7 and CED-C/E-8
Complexity Cocured "J" Stringers CED-G/E-3 and CED-G/E-4
"J" Frames CED-G/E-3 and CED-G/E-4
Strip Plies DICE-G/E-1
Cut-outs DICE~G/E-2
Cut-out LCoublers DICE-G/E-4
Assembly (Cocured) CED-G/E-19
Moderate Weight/ Skin CED-G/E-7 and CED-G/E-8
Moderate Complexity "J" Stringers CED-G/E-3 and CED~G/E-4
4 Stringers/3 Frames "J" Frames CED-G/E-3 and CED-G/E-4
Strip Plies DICE-G/E-1
Cut-outs DI{E-G/E-2
Cut-~out Doublers DICE-G/E-4
Assembly (Cocured) CED-G/E-10
Moderate Weight/ Skin CED-G/E-7 and CED-G/E-8
Moderate Complexity "J" Stringers CED-G/E-3 and CED-G/E-4
3 Stringers/3 Frames "J¥ Frames CED-G/E-3 and CED-G/E-4
Strip Plies DICE-G/E-1
Cut-outs DICE~G/E-2
Cut-out Doublers DICE-G/E-4
Assembly (Cocured) CED-G/E-10
Minimum Part Count Skin CED-G/E-7 and CED-G/E-8
"J" Frames CED-G/&-3 and CED-G/E-4
Strip Plies DIJE-G/E~1 R
Assembly CED-G/E-10 3
z
;%
nrs Z
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e Cost compa:isons of similar discrete parts from different
materials will be of greatest v~lue at the preliminary
design stage where significant leverage exists to achieve
low cost

® Cost comparison of similar discrete parts from different
materials are of limited value to detail designers who
have already been directed to use a particular material

e Demonstrated selection criteria of dollars/pound weight
saved

e Fully demonstrated use of MC/DG in developing cost/weight
effective designs

e Wider coverage needed to expand data base for basic and
additional manufacturing technologies, e.g., machining
and extrusions.

With regard to the presentation of the manufacturing technology
man-hour data, the following conclusions were arrived at by the aerospace
companies:

e Utilized costing methodology, developed program dollar costs,

used material, labor, and tooling costs

e Cost/weight summary chart and recommendations are of partic-
ular merit.

The trade study cdecision flows for the cost analysing using

the MC/DG for each of the fuselage panels are shown in Figures 24, 25,
and 26.
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SECTION XI

NEED FOR A DYNAMIC COMPUTERIZED MC/DG

A computerized MC/DG can be utilized by designers to perform
many tasks determining the impact of often critical information that
would otherwise be time consuming, intricate, and bothersome if these
effects had to be determined through design charts or utilizing pocket
computers. Several examples of this critical information are described
below. Volume IT of this report describes MC/DG computerization.

One potential applicatiocn of a "dynamic" computerized MC/DG
iz to determine the impact of typical price fluctuations with material
shortages, energy problems, inflation, and the introduction of pro-
duction methods which cause changes in the cost of materials and,
therefore, the capability to utilize accurate current and/or projected
material costs is important in most phases of t'.. design process. This
is particularly true in conceptual and preliminary design where attempts
are made to utilize a greater percentage of advanced materials, initially
expensive. Designers are faced with constantly changing and sometimes
reducing material costs influenced by, for example, high volume commercial
applications such as with graphite/epoxy and graphite/thermoplastics,
and also by new methods employed for producing the reinforcing fibers.
These factors can cause a trade study to become rapidly obsolete. A
computerized MC/DG will increase the number of trade studies that can be
performed and in the application of advanced materials such as compositas,
more realistic and near optimum comparisons can be made.

The determination of the impact of the location on the learning
curve under consideration for the trade study is important. The current
MC/DG data 2re based on unit 200 but the prototype develcpment of air-
craft requiring, for example, trade studier for five aircraft only, would
have a much higher manufacturing cost based on the learning curve. At
the other end of the scale, a large production contract would have a much
lower manufacturing cost on the learning curve. Therefore, the designers
need to include the impact of aircraft buy quantity. The location of the
trade studies on the learning curve is a major factor in management
decisions to determine if the return-on-investment for a potential con-

tract is acceptable. With a computerized MC/DG, the designer can quickly
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determine the point at which it would be practical to respond and
management can provide him with a target.

A "dynamic" computerized MC/DG would also be of use in deter-
mining the impact of lot release size, especially for lot sizes of less
than 25 units. Beyond 25 units for most menufacturing technologies, the
impact of lot size is negligible for the purpose of typical trade studies;
but as the lot size decreases below 15 units, there is, in most cases, a
dramatic impact on cost. With a computerized MC/DG, the designer, in
cooperation with the production planning department, can perform trade
studies to determine a cost-effective design for various lot releases.

The computer would be an invaluable aid in extrapolating and
interpolating dimensional data of airframe parts and assemblies. The
function of the computerized MC/DG is, in reality, more of a necessity
than of a convenience, because it is not possible for the data base to
contain all possible dimensions of aerospace parts. In order to conduct
a trade study, the designer must be able to input the part dimensions.

Another useful feature of a computerized MC/DG would be the
ability to retrieve earlier design trade-off input and results in a
readily usahle and recognizable form. This would allow the designer
to quickly evaluate past designs and determine what features would be
applicable to his present problem and what cost drivers, etc. co avoid.
This retrieving feature would be helpful to designers in preparing
presentations to management detailing how the chosen configuration tor
the part under study was developed based on past experience and forecasts.
Thus, both the designer and management will be confident that the best
part configuration and lowest manufacturing cost has been achieved within
the design constraints, e.g., internal structural space available for
brackets or beams.

There are more possible uses in design of a dynamic MC/DG but
the above examples show that to be a successful design tool, the com-

puterized MC/DG must be a dynamic rather than a static system.
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SECTION XII

BENEFITS AND POTSENTIAL COST SAVINGS DERIVED
THROUGH MC/DG UTILIZATION

The MC/DG represents an important step in arresting the potential
erosion of DOD's ability to purchase the required defense systems. This is
due to the increasing costs of the systems and the competition of social

and other national programs for available funding. The objectives of the

MC/DG have been specified earlier in this report (see Saction II). However.

under the present design and cost estimating prccedures in aerospace
companies, the limited number of qualified cost analysts available and the

time required to conduct adequate cost/weight of trade studies are becoming

serious problems. The Air Force and industry have an urgent need to

evaluate a greater number of structural concept alternatives in a timely

manner prior to commitments to a proposed low-cost design that meets the
performance requirements.

The MC/DG, unlike many handbooks, will be applicable at all
phases of the program development cycle; for example, at the preliminary
design phase or the "window of opportunity" where the greatest leverage
exists to reduce cost, i.e., when less than 5 percent of the total program

cost has been expended, yet decisions have been made which affect 90 to 95

percent of the total program costs. When the system has been committed to

production, only limited opportunities remain to reduce costs.

Utilizing computers, the MC/DG will enable the Air Force and
industry to rapidly determine the influence of abrupt or predicted changes
in the cost and availability of material resources, cost of capital, etc.

The aerospace industry, in the past, has not been considered material

intensive, but material sensitive. However, recently, and in the fore-

seeable future, the availability and cost of materials will have considerable

impact on cost. Computerized data can be updated in the MC/DG to rapidly

reflect these changes. The impact of such uncertainties of a noan-technical

nature can be assessed in a more reliable manner than in the past and more
credible forecasts can be achieved by determir.ing the impact of various

changes on the cost of structural systems. Similarly, a properly maintained

and updated MC/DG will reduce the problem of cost data “ecoming obsolete
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because of inflation, emerging technologies, and increasing automation
in aircraft plants. When complete, the MC/DG will eventually enable
manufacturing cost/performance trades to be conducted which reduce
operations and maintenance costs. The eventual payoff of utilizing
materials, design concepts, and procecses which reduce life-cycle costs
(LCC) is, of course, the ultimate objective. The importance of LCC
becomes clear from the following cost breakdown published several years

ago for the B-52 fleet:

Dollars in Billions

Preliminary Design 0.1
RDT&E 0.5
Acquisition 6.0
Operations 21.0

Using the MC/DG and other structural design guides, it will be possible
to examine airframe designs with regard to manufacturing cost, TI&E,
fracture mechanics, fracture tolerance, maintainability, etc. The
sensitivity of airframe part performance to some manufacturiag tech-
nologies utilized must also be assessed.

Manufacturing cost data are now becoming available for
realistic, credible, cost-effectiveness studies to be conducted when
developing structures for a total integrated system meeting the required
operational or mission capabilities. Furthermore, the MC/DG will provide
an orderly, consistent approach to making cost trade studies upon which
the Air Force and industry can agree. This consistency will be helpful
in evaluating competitive proposals, and the Air Force will be able to
evaluate manufacturing cost/structural performance trade studies very
early in the design phase of the program, before major dollar commitments
and investments are made. Industry use of the MC/DG will enable the Air
Force to evaluate a given structural design more rapidly and efficiently,
since it represents a common base of reference from which the analysis
was made.

When complete, the MC/DG is expected to enable the cost impact
of emerging manufacturing technologies and materials, developed in DOD
programs, to be assessed. The ability of emerging technologies to reduce

cost can be presented to designers. Furthermore, the cost drivers

274




associated with the emerging materials or manufacturing technologies can

also be identified to the designers and also researchers. These emerging

technology cost drivers will be important areas on which to focus

future research and development programs and, hence, accelerate their

applications. 1t can also provide a forecasting tool to predict the time

frame when new technologies will be available. Manyv emerging technologies

do show promise of potential cost reduction and, therefore, the MC,/DG will
be an important tool to identify these cost ra2ductions using designer-
oriented formats, and the emerging technologies will thus become of

greater interest to designers and management than basing their acceptance
on structural weight reduction potential alone.

As the MC/DG presents cost drivers through CDE and CED formats,
areas in which DOD should consider allocating funds will, therefore, be
identified. The MC/DG can, therefore, serve as a planning tool, for
example, by identifying the areas in which Integrated Computer-Aided

Manufacturing (ICAM) should be directed, i.e., using ICAM to reduce cost
drivers.

With the MC/DG becoming available to designers, more trade
studies will be possible within the time span available or schedule

limitations resulting in more alternative designs being considered to

achieve lower costs. Furthermore, opportunities for cost reduction,

i.e., by alleviating manufacturing cost drivers, will become evident
to designers at an earlier stage in the design process than now possible.

The MC/DG will, furthermore, serve as a communications liuk between design
and manufacturing.

With the properly maintained and updated MC/DG, the possibility

of manufacturing man~hour data becoming obsolete is reduced.

It is interesting to compare the various design approaches where

weight and/or cost contrels are applied. The following compares the

application of the MC/DG with other methods in controlling weight or
cost:

o Design weight control only

- No cost control

Decisions baged on lowest weight design

Cost increases (upward of 10 percent)
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o Decisions based on cost/weight effectiveness
- Reduces cost generally to within 10 percent of targets

e Design cost control (design-to-cost)

- With cost control: projected cost generally reduced
to within 10 percent

e MC/DG application

- Projected potential cost savings
(a) When applied in preiiminary design phase--10 to
15 percent
(b) When applied in production or detail design phase--
2 to 5 percent.

Based on these projected cost savings, which were determined
from discussions with experienced designers at the team-member companies,
it is useful to make approximate assessments of the dollar savings
represented by these predicted percentages:

Transport Aircraft

e From the Air Force "Manufacturing Cost Reduction Study"
(AFML-TM-LT-73-1; January, 1973); Transport Structure
Cost Distribution (Figure B-2 in report); see Figure 27,
- Airframe structure--$2,900,000/ACFT

e Projecting a 2 to 5 percent cost savings over 200 ACFT
by utilizing the MC/DG during production design phase:

$58,000/ACFT or $11,600,000 for

- A 2 percent savings

the program

|1}

- A 5 percent savings = $145,000/ACFT or $29,000,000 for
the program

Fighter Aircraft

e From the Air Force "Manufacturing Cost Reduction Study"
(AFML-TM-LT-73-1; January, 1973); Fighter Structure Cost
Distribution (Figure B-14 in report); see rFigure 28,

® Projecting a 2 to 5 percent savings over 500 ACFT by
utilizing the MC/DG during the production design phase:

$4,320,000 for the program

$10,800,000 for the program.

The cost savings possible with future supersonic advanced

it

- A 2 percent savings

1}

- A 5 percent savings
aircraft, which will use larger quantities of steel, titanium, composites,
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e Decisions based on cost/weight effectiveness
-~ Reduces cost generally to within 10 percent of targets
¢ Design cost control (design-to-cost)
- With cost control: projected cost generally reduced
to within 10 percent
e MC/DG application
- Projected potential cost savings
(a) When applied in preiiminary design phase--10 to
15 percent
(b) When applied in production or detail design phase—-
2 to 5 percent.

Based on these projected cost savings, which were determined
from discussions with experienced designers at the team-member companies,
it is useful to make approximate assessments of the dollar savings
represented by these predicted percentages:

Transport Aircraft

e TFrom the Air Force "Manufacturing Cost Reduction Study"
(AFML-TM-LT-73~1; January, 1973); Transport Structure
Cost Distribution (Figure B-2 in report); see Figure 27,
- Airframe structure--$2,900,000/ACFT

e Projecting a 2 to 5 percent cost savings over 200 ACFT
by utilizing the MC/DG during production design phase:

- A 2 percent savings = $58,000/ACFT or $11,600,000 for
the program

- A 5 percent savings = $145,000/ACFT or $29,000,000 for
the program

Fighter Aircraft

¢ From the Air Force "Manufacturing Cost Reduction Study"
(AFML~TM~LT~73-1; January, 1973); Fighter Structure Cost
Distribution (Figure B-14 in report); see Figure 28,

® Projecting a 2 to 5 percent savings over 500 ACFT by }
utilizing the MC/DG during the production design phase: :
- A 2 percent savings = $4,320,000 for the program
- A 5 percent savings = $10,800,000 for the program.

The cost savings possible with future supersonic advanced

aircraft, which will use larger quantities of steel, titanium, composites,
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castings, etc., are expected to be greater. With these advanced
aircraft, the MC/DG will stimulate the designer to develop innovative
structural configurations at the PD stage which utilize the lowest cost
manufacturing technologies of both conventional and emerging categories.
At present, only a limited number of cost studies can be accomplished

on design concepts of aircraft types prior to production release, due to
the time-consuming process of obtaining required cost irformation and
estimates. This sometimes results in a more costly design being seleccted.
If it is not possible to accomplish these studies prior to the initial
release of the drawings and production go-ahead, the cost associated with
making a change becomes so high that many of the cost reduction oppor-
tunities are lost.

The MC/DG will be used to support detail design decisions in
selecting a design approach at the designer/group leader level. This
will allow for relatively fast decisions to be made without the need
for higher level direction. Decisions that can be supported with
hard rsacts will be made at the design layout table. A greater breadth
will be provided to the designer and the problem of the "point' designer
selecting too narrow a scope, resulting in penalties later in the program,
will be minimized.

The MC/DG will educate designers cf various levels of experience
with regard to less costly alternatives which will improve future designs.
Important too is that the MC/DG will serve as a vehicle of communication
between manufacturing and design and, tharefore, will be used to illus~
trate and support engineering/manufacturing decisions concerning the
design approaches which reduce cost.

The MC/DG can serve as an important training document for young
and less experienced designers. It can equip them to participate in
design~to-lowest cost programs. It will also serve as course material
for universities that are sometimes weak in teaching design synthesis
and analysis responding to actual engineering design objectives and
industry staffing requirements.

It is evident that the MC/DG will serve as an important tool to
motivate all members of design teams into a design-to-lowest cost attitude.
It will provide cost information to the designer in a manner familiar to

him through the designer-oriented formats.
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There are a number of additional potential cpportunities to
utilize the MC/DG data developed stimulating design/manufacturing inter-
action towards lower cost. These are summarized as follows:

¢ Pocket-sized beok illustrating the high cost drivers

representing 80 percent of airframe costs and cross

referenring with MC/DG

- Would contain charts and serve as important tool on
the plant floor in discussjons on design/manufacturing
interaction

® Pocket computer to enable selection of manufacturing

processes which avoid or alleviate cost drivers

¢ Cost advantages of emerging materials and processes can

be identified, thus acceleratin, technology transfer

e MC/DG can be used as a forecasting tool

e MC/DG, which quantitatively identifies cost drivers, can

be utilized for planning purposes

e MC/DG can be used %o justify acquisition of new equipment,

for example, by indicating when equipment should be
repiaced due to the emergency of a cost driver such as
energy requirements.

The MC/DG can be readily used. The designer will develop con-
fidence in the information and, therefore, use it more extensively in
his future tasks. The MC/DG will enable the designer to understand the
factors affecting cost and the various trades which can be made to reduce
costs. The MC/DG can also be used to evaluate cost of potential changes.
For example, as new technologies become available, can they be incorporated
and be cost effective on an in-production program?

Based on consideration of the above factors, a 5 percent

reduction in the cost of design/development is also predicted.
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SECTION Y111

THE MC/DG IN ED. CATION

At the present time, it is difficult for the aerospace industry

to recruit qualified design engineers. 'h.2 shortage of engineers is

caused by the fact that seviral ncw projects are currently under way in

industry-~both commercial and military. Because of this and other

factors, university graduates will have to play an important role in the

aerospace industry in the near future.

One of the other factors that will require university graduates

to play an increasingly important part is shown in Figure 29. This chart,

courtesy of Mr. R. H. Hammer, Boeing Commercial Airplane Company, shows

the experience distribution of aerospace industry designers as a function

of age. The theoretical curve implies that when an engineer retires, a

new person would join the company. This allows time for the inexperienced

designer to develop and gain knowledge from the seasoned designers he is

associated with. The optimum curve takes into account early retirement

and persons transferring from the aerospace industry to other industries.
The problem is that the actual situation is not represented by this optimum

curve, This is caused by basically two factors.

influx of engineers that occurred during World War II and the other is that

during layoffs, such as experienced during the late 1960's, and to some

One factor is the large

extent, in recent years, the last persons entering the aerospace industry

were the first ones released. As the curve shows, the average age of

designers is approximately 55 years. Furthermore, many experienced
engineers are considering early retirement within the next few years
and unless some method is developed to transfer the vast amount of
knowledge acquired by retiring designers over the years to less exper-

ienced designers, a valuable resource will be lost. The MC/DG is one

[T

means of documenting and retaining this experience thus achieving the

needed transfer of design and manufacturing knowledge,

Wi Mt e

A further problem is that the industry has been generally

il

disappointed by the lack of design understanding of graduates from our 3
universities and colleges.

'

This has resulted in industry having to

sl

conduct expensive and time-consuming training programs for new hires;

i3
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tc familiarize them with the design process employed in the aerospace
industry. Because the recent graduate will be expected :o become
irvolved in design earlier in his career, tools are needad to help speed
up the process of transitioning the graduates to the aercspace design team.
The MC/DG is such a tool. It can be integrated into the university
engineering curricula and industry training programs.

An important area in which the MC/DG can be used for training is

in desigo-to~cnst (DTC) programs. The MC/DG introduces the designer to

design-to~lowest cost objectives, cost drivers, and methodologies seldom
covered in his education. It not only introduces the designer to DIC,
but it indicates how to achieve that goal by the airtrame application
exemplez contained in the MC/DG, tutorials on the cowputerized system,
and by the actual trade studies conducted and included in the appendices
to this report.

The MC/DG introduces the less experienced designer to shop floor
activities. The MC/DG provides an insight on how parts are manufactured
and will help graduates design a part for lower cost manufacture. This
information will improve communication between the less experienced
designer and his co~workers, both in the design and manufacturing offices.

In the recent 67th Wilbur and Orville Wright Memorial Lecture,
Mr, David S. Lewis* stated that:

"Members of design teams must have an understanding of
several disciplines; the need will be for generalists
wmuch like the ones who started aviation on the road

to success 73 years ago."

This statemenr reinforces the need for multidisciplinary and interdisci-
plinary abilities contained in the following definition of a good
"designer' given by Mr. C. Rodwell, Institution of Mechanical FEngineers,
London, England:

The Qualities of a Good Desipner

e Inventiveness~-Ability to think or discover valuable,
useful ideas or concepts for things or processes to

accomplish given objectives

Engineering analysis~-The atility to analyze a given
‘component, system, or process using engineering cr
scientific prirciples in order to arrive quickly at

meaningful answers

* "Changing Criteria in Military Aircraft Design", Azrospace Journal
Royal Aercnautical Society, March 1979, pp 16-24.,
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Fngineering science~-—Thorough knowledge and indepth training
in an enginecering science specialty

Interdisciplinary ability--Ability to deal competently
and confidently with basic problems or ideas from dis-
ciplines outside of the specialty of the dasignes
Decision making--The abilitv to mai.e decisions in the
face of uncertainty but with a full and balanced grasp
of all the factors involved

Manufacturing process--Knowladge of, and an appreciation
for, the potential and limitations of both old and new
manufacturing processes

Communication skill--Abiliity to express oneself clearly

and persuasively, grashically, and in writing.

Benefits of the MC/DG to university preofessors and students

are summarized below:

e ——— e T —

Provides a realistic, easy-to-use source of manufacturing

cost information for aercspace discrete parts and sub-

Provides gemerally apolicable, up~to-date source of

information, as opposed to specific information from the

Facilitates tne alignment of theoretical courses to
industry staffing requirements by enabliing structural
perfermance/manufasturing cost tradz studies to be con-
ducted in the classroom

The comnuterized MC/DG will provide an additional dimension

to computer activities im engineering schools.

Introduces students to systematic methodologies ferx
performing trade studies
Teaches student the impact of manufacturing te:hmology

selection, comparative costs, and manufacturing facility

Familiarizes studeants with the use c¢f manufacturing cost

data at all stages of the design process

To the Professor
®

assemblies
L]

brochures of vendors
L ]
L ]
To the Student
o
L ]

requirements
]
o

Aids students in the transition from the classroom or

iaboratoryv environment to indus.ry.
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The following is a course outlire for future designers on the
use of the MC/DG:
e Introduction to the background and need of MC/DG
e How MC/DG complements the ever present thrust of '"design-
to-cost"
¢ Explanation of CDE, CED, and other information presented
in MC/DG
e Illustration of hew the MC/DG is used and applied by:
- Addressing each manufacturing technology
- Stressing the cost drivers and illustrating these
with examples
- Creating theoretical trade~off situations in airframe
structure development
- Tllustrate these with diagrams, engineering drawings, and
design criteria.
Examples of common trade-off situations that confront
designers would be used. Direction would be provided
on how to proceed and significance of results explained.
The trades would be extended to include both cost and
weight (requiring strength of materials and structural

analysis).
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